111 年度工研院

智慧製造、功率元件模組與半導體電子構裝技術等相關研發成果非專屬授權案

- 一、主辦單位:財團法人工業技術研究院(以下簡稱「工研院」)。
- 二、非專屬授權標的:智慧製造、功率元件模組與半導體電子構裝技術等相關研發成果80 案 181 件及相關技術 137 件:(一)功率元件與模組技術專利 18 案 32 件;暨相關技術 16 件(二)半導體光源技術專利 10 案 27 件;暨相關技術 11 件、(三)半導體電子構裝技術專利 11 案 23 件;暨相關技術 25 件(四)取像與影像處理技術專利 6 案 17 件;暨相關技術 13 件、(五)記憶體技術專利 3 案 10 件;暨相關技術 5 件、(六)軟性混合電子(FHE)技術專利 5 案 8 件;暨相關技術 6 件、(七)智慧製造與智能辨識技術專利 19 案 45 件;暨相關技術 44 件、(八)虛實融合與互動系統技術專利 6 案 14 件;暨相關技術 11 件、(九)顯示製程與設備技術專利 2 案 5 件、(十)DLT 無光罩技術 2 件、(十一)面板級製程技術新應用技術 2 件及(十二)任意形態顯示與感測製造技術 2 件,詳如附件。,詳如附件。
- 三、非專屬授權廠商資格:國內依中華民國法令組織登記成立且從事研發、設計、製造或銷售之公司法人。

四、公開說明會:

- (一)舉辦時間:民國(下同)111年5月27日下午3時至4時。
- (二)舉辦地點:採線上方式辦理。
- (三)報名須知:採電子郵件方式報名。有意報名者,請於111年5月25日中午12時整(含)前以電子郵件向本案聯絡人報名(主旨請註明「111年度工研院智慧製造、功率元件模組與半導體電子構裝技術等相關研發成果非專屬授權案:公開說明會報名」,並於內文中陳明:公司名稱、公司電話、參與人數、姓名、職稱)。工研院「技轉法律中心」聯絡人將於111年5月26日下午5時整(含)前發送電子郵件回覆並告知公開說明會會議資訊。

五、聯絡人:工研院技術移轉與法律中心 麥小姐

電話:+886-3-591-8320

傳真:+886-3-582-0466

電子信箱: evemai@itri.org.tw

地址:310401 新竹縣竹東鎮中興路四段 195 號 51 館 110 室

附件:

一、研發成果授權標的(80 案 181 件)

技術	案	件	/AL AG 12.15	리ト 상F	田安	車到中央力級	由ᆇᄠ	八小時	委辦	專利
類別	次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	單位	種類
功率元 件與模 組	1	1	P510000 05CN	獲證	中國大陸	具有雙面場板的晶體管元件及其制造方法	201110228 914.X	ZL20111 0228914 .X	經濟部 技術處	發明
	2	2	P510001 14TW	獲證	中華民國	增強模式氮化物異質場 效電晶體元件及其製造 方法	100149705	1538056	經濟部 技術處	發明
	3	3	P510001 16TW	獲證	中華民國	氮化物半導體結構及其 製造方法	100147768	I460855	工研院	發明
		4	P510001 65CN	獲證	中國大陸	氮化物半導體結構	201310057 224.1	ZL20131 0057224 .1	經濟部 技術處	發明
	4	5	P510001 65TW	獲證	中華民國	氮化物半導體結構	101149159	I482314	經濟部 技術處	發明
		6	P510001 65US	獲證	美國	氮化物半導體結構	13/591,232	8946775	經濟部 技術處	發明
	5	7	P510100 62TW	獲證	中華民國	氮化物半導體結構	101137770	I482276	經濟部 技術處	發明
	6	8	P510100 90TW	獲證	中華民國	氮化物半導體結構	101141675	I491068	經濟部 技術處	發明
	U	9	P510100 90US	獲證	美國	氮化物半導體結構	13/726,648	8779468	經濟部 技術處	發明
	7	10	P510100 91TW	獲證	中華民國	增強型氮化鎵電晶體元 件	101148428	I488303	經濟部 技術處	發明
	,	11	P510100 91US	獲證	美國	增強型氮化鎵電晶體元 件	13/686,935	9111851	經濟部 技術處	發明
	8	12	P510200 17US	獲證	美國	氮化物半導體結構	14/144,566	9159788	經濟部 技術處	發明
	9	13	P510200 33TW	獲證	中華民國	氮化物半導體結構	102140326	1565094	經濟部 技術處	發明
	10	14	P510200 42US	獲證	美國	氮化物半導體結構	14/263,978	9112077	經濟部 技術處	發明
	11	15	P510300 26CN	獲證	中國大陸	增強型氮化?晶體管器件	201410608 510.7	ZL20141 0608510 .7	經濟部 技術處	發明
	12	16	P510300 41TWD1	獲證	中華民國	薄膜曲率量測裝置及其 方法	104128170	1575220	經濟部 技術處	發明

技術	案	件	al as mb	JI. AE		± 43 L > h 46	ala ve ne	A d. nk	委辨	專利
類別	次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	單位	種類
		17	P510300	獲證	中華	薄膜曲率量測裝置及其	103143575	I506242	經濟部	發明
			41TW	12.00	民國	方法	100110070	1300212	技術處	12 /1
		18	P510300	獲證	美國	薄膜曲率量測裝置及其	14/583,432	9523572	經濟部	發明
			41US			方法	,		技術處	
		4.0	P510500	مد خدر	中國	.la 546 erik 144 1 - 7 1 114	201611205	ZL20161	經濟部	74 -77
	13	19	57CN	獲證	大陸	半導體基板結構	947.1	.1 .1	技術處	發明
		20	P510500	獲證	中華	半導體基板結構	106100039	I667809	經濟部	發明
		20	57TW	12.00	民國		100100035	1007009	技術處	<i>3</i> 2 /4
			P510600		中國	歐姆接觸結構及具有此	201710513	ZL20171	經濟部	
		21	07CN	獲證	大陸	歐姆接觸結構的半導體 元件	112.0	0513112.	技術處	發明
	14		P510600			歐姆接觸結構及具有此		0		
		22	07TW	獲證	中華	歐姆接觸結構之半導體	106117919	1664726	經濟部	發明
					民國	元件			技術處	
			P511000	審查	中國	1 七 4 苯 四4 44 四	202111612		經濟部	7Ý nH
		23	56CN	中	大陸	功率半導體裝置	953.X		技術處	發明
	15	24	P511000	審查	中華	功率半導體裝置	110147293		經濟部	發明
	13	24	56TW	中	民國	切平十字短表且	11014/293		技術處	%""
		25	P511000	審查	美國	功率半導體裝置	17/667,558		經濟部	發明
			56US	中			177007,000		技術處	<i>32.</i> 74
		26	P519900	獲證	中華	氮化物半導體模板及其	99143087	I456753	經濟部	發明
	16		91TW		民國	製造方法			技術處	
		27	P519900	獲證	美國	氮化物半導體模板及其	12/963,650	8482103	經濟部	發明
			91US	審查	中國	製造方法 「同服電機及其編碼器校	202210067		技術處經濟部	
		28	P521000 38CN	香 中 中	大陸	一	202210067 397.0		経済市 技術處	發明
	17		P521000	審查	中華	伺服電機及其編碼器校	371.0		經濟部	
		29	38TW	中	民國	正方法	110149190		技術處	發明
			P521000	審查	中國		202111581		經濟部	
		30	39CN	中	大陸	電源供應器	544.8		技術處	發明
	10	31	P521000	審查	中華	電源供應器	110144045		經濟部	發明
	18	31	39TW	中	民國	电源供應品	110144945		技術處	%"
		32	P521000	審查	美國	電源供應器	17/564,217		經濟部	發明
			39US	中		3 w4 · 1/ · 1//3 BB			技術處	* * * *
半導體		33	P510700	審查	中國	顯示陣列的製造方法	201811601		經濟部	發明
光源			26CN	中	大陸		298.6		技術處	
	19	34	P510700	獲證	中華	顯示陣列	107144431	1708104	經濟部	發明
			26TWD1	٠ ١	民國	75 - at -:	4 = 16 0 = -		技術處	
		35	P510700	審查	美國	顯示陣列	17/385,954		經濟部	發明

技術 類別	案次	件次	件編號	狀態	國家	專利中文名稱	申請號	公告號	委辦 單位	專利 種類
			26USC1	中					技術處	
		2.5	P510700	審查	4 m	1 . 1 / kil	15/222 054		經濟部	74 27
		36	26US	中	美國	顯示陣列的製造方法	16/232,064		技術處	發明
		37	P510700	獲證	中華	顯示陣列	107144434	1699598	經濟部	發明
		37	42TWD1	没 证	民國	終 小 1 子 グ 1	10/144434	1099398	技術處	%"
		38	P510700	審查	中華	拼接顯示裝置	108135742		經濟部	發明
	20	30	42TWC1	中	民國	WAR WE	100133712		技術處	JX /1
		39	P510700	審查	美國	拼接顯示裝置	17/483,812		經濟部	發明
			42USC2	中			,		技術處	
		40	P510700	暫准	美國	拼接顯示裝置	16/706,799		經濟部	發明
			42USC1	-h -t	l- m	111 ml 1 . 11 14 m m m m			技術處	
		41	P510900	審查	中國	微型組件結構及顯示設	202110850		經濟部	發明
			38CN P510900	中	大陸中華	備	693.3		技術處經濟部	
	21	42	38TW	獲證	下華 民國	微型元件結構及顯示裝 置	110116846	1753825	経済部 技術處	發明
			P510900	審查	八四	微型元件結構及顯示裝			經濟部	
		43	38US	中	美國	置	17/482,409		技術處	發明
			P511000	審查	中華				經濟部	
		44	23TW	中中		半導體基板以及電晶體	110139931		技術處	發明
			P511000	審查			2021-		經濟部	
	22	45	23JP	中	日本	半導體基板以及電晶體	204503		技術處	發明
			P511000	審查					經濟部	
		46	23US	中	美國	半導體基板以及電晶體	17/544,960		技術處	發明
			P511000	. > . 1-	1 14	色彩轉換單元、應用其				
		47	28TW	審查	中華	之色彩轉換結構及應用	110143860		經濟部	發明
	22			中	民國	其之發光二極體顯示器			技術處	
	23		P511000	審查		色彩轉換單元、應用其			經濟部	
		48	28US	一 中	美國	之色彩轉換結構及應用	17/564,769		技術處	發明
				'		其之發光二極體顯示器			12 m 22	
		49	P511000	審查	中華	顯示裝置	110143969		經濟部	發明
	24		29TW	中	民國				技術處	
		50	P511000	審查	美國	顯示裝置	17/561,991		經濟部	發明
			29US	中	1_ ++				技術處	
		51	P511000	審查	中華	3D 靜脈圖譜的辨識方	110145078		經濟部	發明
	25		43TW	中 審查	民國	法及其識別裝置 3D 靜脈圖譜的辨識方			技術處經濟部	
	52	52	P511000 43US	番鱼 中	美國	3D 靜脈 圖譜的辨識力 法及其識別裝置	17/557,061		經濟部 技術處	發明
			P511000							
	26	53	45TW	審查	中華	眼鏡上的頭戴式擴增實	110146849		經濟部	發明
				中	民國	境立體視覺光學膜			技術處	

技術	案	件							委辦	專利
類別	次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	單位	種類
		- 1	P511000	審查	× 170	眼鏡上的頭戴式擴增實	15/5/2 105		經濟部	70 00
		54	45US	中	美國	境立體視覺光學膜	17/563,105		技術處	發明
			P511000	審查	中華	B ニ エ ト	110147040		經濟部	₹ n□
		55	46TW	中	民國	顯示面板	110147049		技術處	發明
	27	56	P511000	審查	n +	あこ こと	2022-		經濟部	水 叫
	2.7	36	46ЈР	中	日本	顯示面板	20692		技術處	發明
		57	P511000	審查	美國	顯示面板	17/565,461		經濟部	發明
		37	46US	中	天四	飙小面似	17/303,401		技術處	發奶
		58	P511000	審查	中華	光源裝置與顯示裝置	110148157		經濟部	發明
	28	36	47TW	中	民國	九你农且兴緻小农且	110146137		技術處	预"7
	20	59	P511000	審查	美國	光源裝置與顯示裝置	17/565,495		經濟部	發明
		37	47US	中	大四	九伽农且分級小农且	17/303,473		技術處	35 .21
半導體		60	P510800	審查	中國	圖像傳感器封裝件及其	202010150		經濟部	發明
電子構			58CN	中	大陸	製造方法	316.4		技術處	38 71
裝		61	P510800	獲證	中華	影像感測器封裝件及其	108148199	I701777	經濟部	發明
	29	01	58TW	12 02	民國	製造方法	100110199	1/01///	技術處	3% /4
		62	P510800	審查	美國	影像感測器封裝件及其	17/568,740		經濟部	發明
			58USD1	中	7.1	製造方法	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		技術處	12 7
		63	P510800	暫准	美國	影像感測器封裝件及其	16/884,051		經濟部	發明
			58US		,,,,,	製造方法	,		技術處	VA
		64	P511000	審查	中國	封裝載板及其製作方法	202111391		經濟部	發明
			08CN	中	大陸	與芯片封裝結構	873.6		技術處	
	30	65	P511000	審查	中華	封裝載板及其製作方法	110138515		經濟部	發明
			08TW	中	民國	與晶片封裝結構			技術處	
		66	P511000	審查	美國	封裝載板及其製作方法	17/547,200		經濟部	發明
			08US	中		與晶片封裝結構			技術處	
	31	67	P511000	審查	美國	具阻抗控制的預製型	17/550,602		經濟部	發明
			30US	中		BGA 中介基板結構			技術處	
	32	68	P511000	審查	美國	可程式切換式封裝	17/550,474		經濟部	發明
			31US	中		h há an an an an an an			技術處	
		69	P511000	審查	中國	半導體結構及其製造方	202111454		經濟部	發明
			36CN	中	大陸	法	968.8		技術處	
	33	70	P511000	審查	中華	半導體結構及其製造方	110141457		經濟部	發明
			36TW	中	民國	法 业 道 融 从 世 刀 + 制 业 子			技術處	
		71	P511000	審查	美國	半導體結構及其製造方	17/545,996		經濟部	發明
			36US	中		法			技術處	
		72	P511000	審查	中國	異質整合半導體封裝結	202111581		經濟部	發明
	34	, 2	40CN	中	大陸	構	450.0		技術處	3X 34
		73	P511000	審查	中華	異質整合半導體封裝結	110144569		經濟部	發明

技術	案	件				.			委辦	專利
類別	次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	單位	種類
			40TW	中	民國	構			技術處	
		74	P511000	審查	美國	異質整合半導體封裝結	17/564,219		經濟部	發明
		' '	40US	中	7.1	構	177501,215		技術處	12.74
			P511000	審查	中華	電子封裝體、橋接晶片			經濟部	
	35	75	44TW	中	民國	模組及橋接晶片模組的製造方法	110145201		技術處	發明
	26	7.6	P511000	審查	中華	日业人馬力、馬力サ四	110146220		經濟部	JÝ n⊓
	36	76	48TW	中	民國	具對位標記之電子裝置	110146339		技術處	發明
	27	77	P511000	審查	中華	道雕的肉牡仁特如	110144920		經濟部	發明
	37	77	49TW	中	民國	導體線路載板模組	110144829		技術處	發明
		78	P511000	審查	中國	天線整合式封裝結構	202111612		經濟部	發明
		76	54CN	中	大陸	八林正日八月衣祀梅	558.1		技術處	75 71
	38	79	P511000	審查	中華	天線整合式封裝結構	110147388		經濟部	發明
		,,	54TW	中	民國	7000 E E 2021 7000円	110117300		技術處	12 74
		80	P511000	審查	美國	天線整合式封裝結構	17/564,197		經濟部	發明
		00	54US	中	7.1	> 1,3 E D 1 3,2 (10 H)	177501,157		技術處	12.74
		81	P511000	審查	中華	內埋式封裝結構	110148842		經濟部	發明
	39		58TW	中	民國				技術處	
		82	P511000	審查	美國	 內埋式封裝結構	17/562,350		經濟部	發明
			58US	中					技術處	
取像與		83	P510900	審查	中國	深度測量設備及方法	202110933		經濟部	發明
影像處			43CN	中	大陸		088.2		技術處	
理技術	40	84	P510900	審查	中華	深度測量設備及方法	110122337		經濟部	發明
			43TW	中	民國				技術處	
		85	P510900	審查	美國	深度測量設備及方法	17/319,107		經濟部	發明
			43US	中					技術處	
		86	P511000	審查	中國	全息式顯微鏡及其使用	202210084		經濟部	發明
			15CN	中中	大陸	方法	160.3		技術處	
	41	87	P511000	審查	中華	全像式顯微鏡及其使用	110139149		經濟部	發明
			15TW	中中	民國	方法			技術處	
		88	P511000	審查	美國	全像式顯微鏡及其使用	17/580,612		經濟部	發明
			15US	中本	EDC/	方法	21100152		技術處	
		89	P511000 18EP	審查中	EPC/ 歐盟	步態評估系統及步態評 估方法	21198152.		經濟部	發明
				T		他从本	7		技術處	
	42	90	P511000 18CN	審查	中國	步態評估系統及步態評	202110882		經濟部	發明
			IOUN	中	大陸	估方法	220.1		技術處	12.73
		_	P511000	審查	中華	步態評估系統及步態評			經濟部	
		91	18TW	中	民國	估方法	110127494		技術處	發明
		1		<u> </u>	- ,	1	L	<u> </u>	221147	

技術	案	件							委辨	專利
類別	次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	單位	種類
		02	P511000	審查	n 1	步態評估系統及步態評	2021-		經濟部	zy n⊓
		92	18JP	中	日本	估方法	154659		技術處	發明
		93	P511000	審查	美國	步態評估系統及步態評	17/200 025		經濟部	發明
		93	18US	中	夫因	估方法	17/388,035		技術處	%"
			P511000	審查	中國	計算背對背相機的相對	202111614		經濟部	
		94	25CN	甘旦	大陸	旋轉量和平移量的系統	503.4		技術處	發明
				'	八庄	與方法	303.4		3X 119 20	
			P511000	審查	中華	計算背對背相機之相對			經濟部	
	43	95	25TW	中	民國	旋轉量和平移量的系統	110147673		技術處	發明
						與方法				
			P511000	審查		計算背對背相機之相對			經濟部	
		96	25US	中	美國	旋轉量和平移量的系統	17/556,401		技術處	發明
-						與方法				
	44	97	P511000	審查	中華	嵌入式系統以及振動驅	110149039		經濟部	發明
-			37TW	中	民國	動方法			技術處	
		98	P511000	審查	中華	人體圍度測量系統及方	110148454		經濟部	發明
	45		39TW	中	民國	法 1 四京四月 2 4 7 1			技術處	
		99	P511000	審查中	美國	人體圍度測量系統及方	17/561,159		經濟部	發明
記憶體			39US	審查	中國	法	202010009		技術處經濟部	
拉術		100	P510800 20CN	番 当	大陸	磁性存儲器結構	376.4		經濟部 技術處	發明
1文14			P510800	T	中華		370.4		投 們 經濟部	
		101	20TW	獲證	大型	磁性記憶體結構	108125273	1707468	技術處	發明
	46		P510800	審查	NA				經濟部	
		102	20USD1	中	美國	磁性記憶體結構	17/545,794		技術處	發明
			P510800	'				1122799	經濟部	
		103	20US	獲證	美國	磁性記憶體結構	16/514,523	0	技術處	發明
			P510900	審查	中國		202110547		經濟部	
		104	47CN	中	大陸	鐵電記憶體	939.X		技術處	發明
			P510900	審查	中華	鐵電記憶體元件,包含			經濟部	
	47	105	47TW	中	民國	電流阻障層。	110116532		技術處	發明
		106	P510900	審查	4 m	Mr. Taraban	1=12.50.50.5		經濟部	7Ý nH
		106	47US	中	美國	鐵電記憶體	17/368,686		技術處	發明
		107	P511000	審查	中國	平面式磁化自旋軌道磁	202111459		經濟部	zý n⊓
		107	52CN	中	大陸	性組件	274.3		技術處	發明
	10	108	P511000	審查	中華	平面式磁化自旋軌道磁	110144000		經濟部	發明
	48	108	52TW	中	民國	性元件	110144999		技術處	%"切
		109	P511000	審查	美國	平面式磁化自旋軌道磁	17/563,100		經濟部	發明
		109	52US	中	天 图	性元件	17/303,100		技術處	孩"奶
		-								

技術	案	件							委辨	專利
類別	米 次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	女 州 單位	垂類
合電子	7	7	30CN	中	大陸		662.5		技術處	但从
(FHE)			30011	'	八庄		002.3		121172	
(TILL)		111	P510900	審查	中華	電子裝置	110132805		經濟部	發明
			30TW	中	民國	0176	110132003		技術處	**
		112	P510900	審查	美國	電子裝置	17/466,872		經濟部	發明
			30US	中	7.1	3 7 772			技術處	**
		113	P511000	審查	中國	透明電熱薄膜	202210271		經濟部	發明
	50		03CN	中	大陸	~ 14 BWW W	122.9		技術處	72 /1
		114	P511000	審查	美國	透明電熱薄膜	17/707,974		經濟部	發明
		117	03US	中	<u>,</u>	2011 电热闭床	17/707,574		技術處	2X 71
	51	115	P511000	審查	美國	電子裝置	17/702,814		經濟部	發明
		113	19US	中	ス四	4. 化重	177702,014		技術處	32 71
	52	116	P511000	審查	美國	電子裝置以及製造電子	17/702,812		經濟部	發明
	32	110	20US	中	<u>,</u>	装置的方法	177702,012		技術處	2X 71
			P511000	審查		電生理訊號量測系統、			經濟部	
	53	117	51US	中	美國	電生理訊號調節方法與	17/696,065		技術處	發明
				'		電極組件			121172	
智慧製		118	P510900	審查	中華	透明天線及其製作方法	110116637		經濟部	發明
造與智	54	110	35TW	中	民國	2 7700000000000000000000000000000000000	110110037		技術處	7X /1
能辨識	34	119	P510900	審查	美國	透明天線及其製作方法	17/409,714		經濟部	發明
		117	35US	中	7.4	Z MYCKOWY WIT WITH	177 105,711		技術處	72 /1
		120	P510900	審查	中國	天線模塊	202111091		經濟部	發明
		120	44CN	中	大陸	7 (19) (19) (19)	308.8		技術處	72 /1
	55	121	P510900	審查	中華	天線模組	110121082		經濟部	發明
			44TW	中	民國	× 1/4 1/4 1/4	110121002		技術處	12 74
		122	P510900	審查	美國	天線模組	17/498,606		經濟部	發明
			44US	中	7.	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	177.190,000		技術處	**
		123	P511000	審查	中國	陣列開關電路系統及開	202111457		經濟部	發明
	56		02CN	中	大陸	關電路	919.X		技術處	
		124	P511000	審查	中華	陣列開關電路系統及開	110141770		經濟部	發明
			02TW	中	民國	關電路			技術處	
		125	P511000	審查	中國	高頻元件測試裝置及其	202111457		經濟部	發明
			06CN	中	大陸	測試方法	916.6		技術處	
	57	126	P511000	審查	中華	高頻元件測試裝置及其	110142087		經濟部	發明
			06TW	中	民國	測試方法			技術處	
		127	P511000	審查	美國	高頻元件測試裝置及其	17/559,371		經濟部	發明
			06US	中		測試方法			技術處	
		128	P511000	審查	中國	存儲器內的可配置運算	202111478		經濟部	發明
	58		16CN	中	大陸	單元	483.2		技術處	
		129	P511000	審查	中華	記憶體內的可配置運算	110140162		經濟部	發明
			16TW	中	民國	單元			技術處	

技術	案	件							委辨	專利
類別	次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	單位	種類
		120	P511000	審查	¥ 129	記憶體內的可配置運算	17/670 000		經濟部	zý nri
		130	16US	中	美國	單元	17/679,090		技術處	發明
		121	P511000	審查	中國	模數乘法電路與計算模	202111547		經濟部	<i>3</i> % ⊓□
		131	35CN	中	大陸	數乘法的方法	064.X		技術處	發明
	50	122	P511000	審查	中華	模數乘法電路與對應之	110142200		經濟部	zý nri
	59	132	35TW	中	民國	計算模數乘法之方法	110143399		技術處	發明
		122	P511000	審查	¥ 129	模數乘法電路與對應之	17/5/2 702		經濟部	<i>3</i> ¥ n⊓
		133	35US	中	美國	計算模數乘法之方法	17/562,793		技術處	發明
		134	P511000	審查	中國	用於生理訊號監測的監	202111542		經濟部	發明
	(0)	134	41CN	中	大陸	測裝置及其操作方法	777.7		技術處	%"
	60	125	P511000	審查	中華	用於生理訊號監測的監	110145144		經濟部	JÝ n¤
		135	41TW	中	民國	測裝置及其操作方法	110145144		技術處	發明
			P520900	rb x	419	運算單元架構、運算單	202111172		你读如	
		136	44CN	審查中	中國	元叢集及卷積運算的執	202111173		經濟部	發明
				Y	大陸	行方法	336.4		技術處	
			P520900		中華	運算單元架構、運算單			經濟部	
	61	137	44TW	獲證	下華 民國	元叢集及卷積運算的執	109146644	1753728	經濟市 技術處	發明
					八四	行方法			12111 处	
			P520900	審查		運算單元架構、運算單			經濟部	
		138	44US	番旦 中	美國	元叢集及卷積運算的執	17/136,744		技術處	發明
				7		行方法			双侧 处	
		139	P520900	審查	中國	微集成電路大規模測試	202110226		經濟部	發明
		139	48CN	中	大陸	版 未 成 电码 八 % (261.5		技術處	38 77
		140	P520900	暫准	中華	微積體電路巨量檢測	110100052		經濟部	發明
	62	140	48TW	H /F	民國	现很短电子 主纵八	110100032		技術處	28 71
	02	141	P520900	審查	日本	微積體電路巨量檢測	2021-		經濟部	發明
		111	48ЈР	中	11/4-	风景起电型工主从八	186597		技術處	32 /1
		142	P520900	審查	美國	微積體電路巨量檢測	17/132,471		經濟部	發明
		172	48US	中	ХД	10.10 10 10 10 11 11 11 11 11 11 11 11 11 1	17/132,471		技術處	7X /1
	63	143	P520900	獲證	中華	跨時脈域之中斷控制裝	110100262	I757033	經濟部	發明
	0.5	143	54TW	72 匝	民國	置與中斷控制方法	110100202	1/3/033	技術處	38 71
	64	144	P521000	審查	中華	壓控振盪裝置	110147895		經濟部	發明
	04	144	02TW	中	民國	产红状蓝衣且	11014/093		技術處	ダツ
		145	P521000	審查	中華	PCR 快速檢測裝置及其	110141503		經濟部	發明
	65	173	12TW	中	民國	方法	110171303		技術處	12 /1
	00	146	P521000	審查	美國	PCR 快速檢測裝置及其	17/550,771		經濟部	發明
		140	12US	中	八四	方法	1//330,771		技術處	3x 74
	66	147	P521000	審查	中華	多輸入多輸出的累加器	110141536		經濟部	發明
	00	17/	13TW	中	民國	及其執行方法	110171330		技術處	3x 74

技術	案	件							委辦	專利
類別	次	次	件編號	狀態	國家	專利中文名稱	申請號	公告號	單位	種類
		1.10	P521000	審查	V	多輸入多輸出的累加器	1=/-16 0=1		經濟部	76 -77
		148	13US	中	美國	及其執行方法	17/546,074		技術處	發明
		1.40	P521000	審查	中華	+1 +1 4+ W	110015576		經濟部	केट का
	67	149	16TW	中	民國	散熱裝置	110215576		技術處	新型
		150	P521000	審查	中華	運動賽事影片處理方法	111100076		經濟部	JÝ nD
	(0)	150	33TW	中	民國	及系統	111100076		技術處	發明
	68	151	P521000	審查	美国	運動賽事影片處理方法	17/50/ 005		經濟部	전 25
		151	33US	中	美國	及系統	17/506,805		技術處	發明
			P521000	宏木	中國	MIMO 的信號檢測與搜	202111502		/	
		152	35CN	審查中		尋方法、解碼電路及接	202111593		經濟部	發明
				7	大陸	收天線系統	116.7		技術處	
			P521000	審查	中華	MIMO之訊符偵測與搜			經濟部	
	69	153	35TW	番鱼 中		尋方法、解碼電路及接	110148451		經濟部 技術處	發明
				T	民國	收天線系統			投 侧 処	
			P521000	審查		MIMO之訊符偵測與搜			經濟部	
		154	35US	一申	美國	尋方法、解碼電路及接	17/561,513		技術處	發明
				7		收天線系統			1又11月 处	
			P521000	審查	中國	在影片自動置入虛擬廣	202210175		經濟部	
		155	36CN	一中	大陸	告的系統、電腦程式產	393.4		技術處	發明
				'	八庄	品及其方法	373.4		1文7時 灰色	
			P521000	審查	中華	在運動賽事影片自動置			經濟部	
	70	156	36TW	中	民國	入虛擬廣告的系統、電	111106918		技術處	發明
				'	NA	腦程式產品及其方法			12 m /2	
			P521000	審查		在運動賽事影片自動置			經濟部	
		157	36US	中	美國	入虛擬廣告的系統、電	17/554,623		技術處	發明
				'		腦程式產品及其方法			1211/2	
		158	P521000	審查	中國	神經網路的處理方法及	202210143		經濟部	發明
			48CN	中	大陸	其服務器與電子裝置	741.X		技術處	**
	71	159	P521000	審查	中華	神經網路之處理方法及	110148953		經濟部	發明
			48TW	中	民國	其伺服器與電子裝置			技術處	
		160	P521000	審查	美國	神經網路之處理方法及	17/562,700		經濟部	發明
		100	48US	中	7,1	其伺服器與電子裝置	1,7002,700		技術處	32 74
		161	P521000	審查	中華	神經網路模型的量化方	110148077		經濟部	發明
	72	101	52TW	中	民國	法及深度學習加速器	1101.0077		技術處	** **
	-	162	P521000	審查	美國	神經網路模型的量化方	17/560,010		經濟部	發明
	_		52US	中		法及深度學習加速器			技術處	
虚實融		163	P511000	審查	中華	資訊顯示方法及其處理	110146857		經濟部	發明
合與互	73		05TW	中	民國	裝置與顯示系統	110110007		技術處	** '1
動系統	"	164	P511000	審查	美國	資訊顯示方法及其處理	17/551,197		經濟部	發明
		107	05US	中	, A A	裝置與顯示系統	1//331,17/		技術處	42 /1

技術	案	件	件編號	狀態	國家	專利中文名稱	申請號	公告號	委辨	專利
類別	次	次	17 988 30	八思	四季	予州下义石併	T 可加	公司號	單位	種類
		165	P511000	審查	中國	用於防止動暈的圖像顯	202111114		經濟部	水 四
	7.4	165	10CN	中	大陸	示系統及圖像顯示方法	413.9		技術處	發明
	74	166	P511000	審查	中華	用於防止動暈之圖像顯	110122052		經濟部	發明
		166	10TW	中	民國	示系統及圖像顯示方法	110133053		技術處	% 奶
		167	P511000	審查	中華	減緩動量的影像顯示方	110120570		經濟部	2 公口口
	75	10/	13TW	中	民國	法及影像顯示系統	110138578		技術處	發明
	75	160	P511000	審查	关网	減緩動暈的影像顯示方	17/520 710		經濟部	JÝ n□
		168	13US	中	美國	法及影像顯示系統	17/529,718		技術處	發明
		160	P511000	審查	中華	具有感測元件的顯示裝	110140157		經濟部	JÝ n□
	-	169	17TW	中	民國	置	110142157		技術處	發明
	76	170	P511000	審查	¥ 129	具有感測元件的顯示裝	17/520 007		經濟部	JÝ n⊓
		170	17US	中	美國	置	17/530,007		技術處	發明
			P511000	+> +	l- 170	眼球定位方法及其影像			1-1-1-10	
		171	26CN	審查	中國	處理裝置與影像處理系	202111508		經濟部	發明
				中	大陸	統	133.6		技術處	
			P511000	ط جد	44. 1	眼球定位方法及其影像				
	77	172	26TW	審查	中華	處理裝置與影像處理系	110144566		經濟部	發明
				中	民國	統			技術處	
			P511000	th t		眼球定位方法及其影像			石油和	
		173	26US	審查	美國	處理裝置與影像處理系	17/547,221		經濟部	發明
				中		統			技術處	
		154	P511000	審查	中國	透明顯示系統及其控制	202111392		經濟部	<i>7</i> ¥ n⊓
		174	34CN	中	大陸	方法與控制裝置	198.9		技術處	發明
	-0	155	P511000	審查	中華	透明顯示系統及其控制	110142170		經濟部	<i>7</i> Ý p⊓
	78	175	34TW	中	民國	方法與控制裝置	110143178		技術處	發明
		176	P511000	審查	¥ 129	透明顯示系統及其控制	17/520 (0)		經濟部	JÝ n⊓
		176	34US	中	美國	方法與控制裝置	17/530,686		技術處	發明
顯示製		1.77	P511000	審查	中國	封裝結構、天線模塊以	202210224		經濟部	<i>3</i> Ý p⊓
程與設		177	42CN	中	大陸	及探針卡	578.X		技術處	發明
備技術		170	P511000	審查	中華	封裝結構、天線模組以	111107007		經濟部	<i>3</i> Ý p⊓
	79	178	42TW	中	民國	及探針卡	111106297		技術處	發明
		1=0	P511000	審查	¥ ==	封裝結構、天線模組以	1=/=0=064		經濟部	74 117
		179	42US	中	美國	及探針卡	17/707,964		技術處	發明
		100	P511000	審查	中華	/5. ± /1.14	110110777		經濟部	74
	60	180	55TW	中	民國	像素結構	110149563		技術處	發明
	80	100	P511000	審查	¥	/ <u>/</u> /2 ± /.1 1 ¹	15/5/2/		經濟部	70
		181	55US	中	美國	像素結構	17/566,478		技術處	發明

【備註】: 本標案公告所包含之專利範圍除專利清單明載外,包含上開專利之延續案、分割案、 EPC 申請案指定國別後所包含之各國專利。

二、技術授權標的(137件)

技術 類別	項次	產出 年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
功率元				GaN HEMT 之元件設計、製	B5G/6G 通訊系統、毫	經濟部	B5G/6G 高
件與模		110	超高頻電晶體	程整合及驗證技術。本技術	米波通訊、雷達等。	技術處	頻高功率電
組	1	110	製程技術	可提供授權廠商技術報告、			子元件與模
				諮詢及部分製程服務。			組計畫
			SiC MOSFET	此技術已完成 SiC MOSFET	工業馬達、電動車、風	經濟部	工研院創新
	2	100	SIC MOSFEI 元件模擬技術	元件之模擬、設計以及雛型	力發電。	技術處	前瞻技術研
			1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	之製作與量測。			究計畫
			SiC MOSFET	此技術已完成 SiC MOSFET	工業馬達、電動車、風	經濟部	工研院創新
	3	101	元件模擬及設	元件之模擬、設計以及雛型	力發電。	技術處	前瞻技術研
			計技術	之製作與量測。			究計畫
				此技術已完成 SiC MOSFET	工業馬達、電動車、風	經濟部	車用規格高
			SiC MOSFET	元件之模擬、設計以及雛型	力發電。	技術處	功率模組先
	4	101		之製作與量測。			期技術研發
			一元件模擬技術 				與設備建置
							計畫
			SiC MOSFET	此技術已完成 SiC MOSFET	工業馬達、電動車、風	經濟部	B5G/6G 高
	5	110	高功率元件技	元件之模擬、設計以及雛型	力發電。	技術處	頻高功率電
	3	110	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	之製作與量測。			子元件與模
			1714				組計畫
				本計畫開發之碳化矽功率模	工業伺服馬達。	經濟部	工業伺服電
				組採用熱傳導係數為 12W		技術處	機節能驅控
				之高散熱絕緣銅基板進行設			關鍵組件開
				計,簡化模組組裝程序,提			發計畫
	6	110	0 銅基板設計	升整體模組可靠度性能。模			
	U	110		組通過工規可靠度測試,其			
				包含溫度循環測試(TCT),			
				高溫偏壓測試(HTRB),暫態			
				操作測試(IOL)與振動測試			
				(VVF) °			

技術	項	產出				委辨	計畫
類別	次	年度	技術名稱	技術特色	可應用範圍	單位	名稱
				晶片接合材料在確保系統性	Si/SiC/GaN 功率模組、	經濟部	工業伺服電
				能和可靠性方面有著至關重	陶瓷基板線路增厚、內	技術處	機節能驅控
				要的作用。本研究已開發包	埋功率模組。		關鍵組件開
				括多晶片銅燒結與模組可靠			發計畫
				度驗證的關鍵技術。在優化			
	_	110	高可靠度銅燒	的製程條件下,獲得了無孔			
	7	110	結技術	隙的銅燒結接點,接點推力			
				強度高達 70 Mpa,通過環境			
				測試條件之技術水準,經歷			
				TCT (-55~150°C)之可靠度測			
				試,推力強度仍維持70			
				MPa 以上。			
				利用先進異質整合封裝將高	毫米波通訊,5G,物聯	經濟部	B5G/6G 高
				頻功率元件及天線整合,最	網,衛星通訊。	技術處	頻高功率電
			幸忙工从 11#	佳化 AiP 封裝結構設計,縮			子元件與模
	8	110	高頻天線封裝	短訊號通訊路徑、實現高頻			組計畫
			模組技術	寬及晶片密度,以因應			
				5G、物聯網、衛星通訊等應			
				用。			
				利用先進異質整合封裝將高	毫米波通訊,5G,物聯	經濟部	B5G/6G 高
				頻功率元件及天線整合,最	網,衛星通訊。	技術處	頻高功率電
				佳化 AiP 封裝結構設計,縮			子元件與模
	9	111	高頻天線封裝	短訊號通訊路徑、實現高頻			組計畫
			模組技術	寬及晶片密度,以因應			
				5G、物聯網、衛星通訊等應			
				用。			
			. +	功率模組生產線管理程序及	生產管理、功率半導	經濟部	工研院環境
	10	110	功率模組試量	實施準則參考。	體、電力電子、功率模	技術處	建構總計畫
			產物料管理		組。		
				本計畫開發之功率模組技術	工業伺服馬達驅動器,	經濟部	工業伺服電
				包括熱傳,電性及結構應力	電動車,充電樁,太陽	技術處	機節能驅控
				設計及最佳化技術,藉由模	能逆變器等。		關鍵組件開
				擬設計依據系統端需求規格			發計畫
				分析功率元件模組化之晶片			
	11	110	功率模組設計	及材料温度,模組電流分布			
				及寄生參數,以及材料之熱			
				應立及變形等參數,可提供			
				模組組裝及模組應用之依			
				據。縮短產品開發時程,提			
				升產品良率。			
]			7/4 1			

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
				本計畫開發之功率模組技術	工業伺服馬達驅動器,	經濟部	高壓/大功率
				包括熱傳,電性及結構應力	電動車,充電樁,太陽	技術處	應用之多階
				設計及最佳化技術,藉由模	能逆變器等。		層電力轉換
				擬設計依據系統端需求規格			系統(PCS)
				分析功率元件模組化之晶片			先期研究計
	12	110	功率模組設計	及材料温度,模組電流分布			畫
				及寄生參數,以及材料之熱			
				應立及變形等參數,可提供			
				模組組裝及模組應用之依			
				據。縮短產品開發時程,提			
				升產品良率。			
				本計畫開發之功率模組技術	工業伺服馬達驅動器,	經濟部	大功率電力
				包括熱傳,電性及結構應力	電動車,充電樁,太陽	技術處	轉換系統
				設計及最佳化技術,藉由模	能逆變器等。		(PCS)研發
				擬設計依據系統端需求規格			計畫(1/4)
				分析功率元件模組化之晶片			
	13	111	功率模組設計	及材料温度,模組電流分布			
				及寄生參數,以及材料之熱			
				應立及變形等參數,可提供			
				模組組裝及模組應用之依			
				據。縮短產品開發時程,提			
				升產品良率。			
				本計畫開發之功率模組技術	工業伺服馬達驅動器,	經濟部	化合物半導
				包括熱傳,電性及結構應力	電動車,充電樁,太陽	技術處	體元件關鍵
				設計及最佳化技術,藉由模	能逆變器等。		技術計畫
				擬設計依據系統端需求規格			(1/4)
	14 111			分析功率元件模組化之晶片			
		111	功率模組設計	及材料溫度,模組電流分布			
				及寄生參數,以及材料之熱			
				應立及變形等參數,可提供			
				模組組裝及模組應用之依			
				據。縮短產品開發時程,提			
				升產品良率。			

技術	項	產出				委辦	計畫
類別	· 次	年度	技術名稱	技術特色	可應用範圍	單位	名稱
		, , , ,		本計畫開發之功率模組技術	工業伺服馬達驅動器,	經濟部	工研院創新
				□包括熱傳,電性及結構應力	電動車,充電樁,太陽	技術處	前瞻技術研
				 設計及最佳化技術,藉由模	能逆變器等。		究計畫
				擬設計依據系統端需求規格			
				 分析功率元件模組化之晶片			
	15	111	功率模組設計	 及材料温度,模組電流分布			
				及寄生參數,以及材料之熱			
				應立及變形等參數,可提供			
				模組組裝及模組應用之依			
				據。縮短產品開發時程,提			
				升產品良率。			
				本計畫開發之功率模組技術	工業伺服馬達驅動器,	工研院	自有計畫
				包括熱傳,電性及結構應力	電動車,充電樁,太陽		
				設計及最佳化技術,藉由模	能逆變器等。		
				擬設計依據系統端需求規格			
				分析功率元件模組化之晶片			
	16	111	功率模組設計	及材料温度,模組電流分布			
				及寄生參數,以及材料之熱			
				應立及變形等參數,可提供			
				模組組裝及模組應用之依			
				據。縮短產品開發時程,提			
				升產品良率。			
半導體				micro-LED 顯示模組技術,	穿戴裝置、車載、商用	經濟部	擴增實境之
光源			微間距及高解	以 AR/MR 應用情境需求為	顯示器。	技術處	高亮度暨低
	17	110	析之 CMOS 與	導向,可做出高亮度、省電			功耗微型發
	1,	110	micro-LED 異	的光機微型化模組,將成為			光二極體顯
			質整合	微型顯示技術的新主流。			示模組開發
							計畫
				高精度與高密度 micro-LED	AR/MR、穿戴裝置。	經濟部	擴增實境之
			micro-LED 與	陣列與 CMOS 驅動背板接合		技術處	高亮度暨低
	18	110	CMOS 異質整	技術。同時,去除原生 LED			功耗微型發
			合技術	基板,達到磊晶薄膜完整呈			光二極體顯
			12.11	現及 micro-LED 陣列正常點			示模組開發
				亮。			計畫
				量子點色轉換技術結合藍光	AR/MR、穿戴裝置、車	經濟部	擴增實境之
				micro-LED 作為色轉換之架	載、商用顯示器。	技術處	高亮度暨低
	19	110	QD 光色轉換技	構,可以解決微間距高解析			功耗微型發
			術	度全彩顯示模組之光色轉換			光二極體顯
				效率不足之關鍵問題。			示模組開發
							計畫

技術	項	產出	11. 11. 15. 46	11 11 11 11		委辦	計畫
類別	次	年度	技術名稱	技術特色	可應用範圍	單位	名稱
			8 마 GaNonSi	完成8吋GaN-on-Si磊晶	GaN B5G/6G 下世代上	經濟部	B5G/6G 高
	20	110		片,透過調整緩衝層的鋁含	游關鍵元件需求。	技術處	頻高功率電
	20	110	無裂縫與翹曲。	量及溫度,降低整體應力與			子元件與模
			菇 苗 技 例	缺陷密度。			組計畫
				完成8吋GaN-on-Si磊晶	GaN B5G/6G 下世代上	經濟部	B5G/6G 高
		110	8 叶 GaNonSi	片,透過調整 2DEG 的結	游關鍵元件需求。	技術處	頻高功率電
	21		超高電導率主	構,提高通道層的溫度讓碳			子元件與模
			動層磊晶技術	的摻雜量下降,提升 2DEG			組計畫
				的品質。			
				整合 micro-LED 微型顯示器	(1)Eye-tracking latency	經濟部	工研院創新
	22	110	智慧運動眼鏡	與微型感測陣列眼追蹤技術	< 10 ms (2)Best tracking	技術處	前瞻技術研
	22	110 光	光機模組	於智慧眼鏡應用,開發先進	accuracy < 3 degree		究計畫
				智慧眼鏡光機系統。			
			日上小县了宓	由量子力學特性所衍生出的	量子通訊。	經濟部	工研院創新
	23	110	110 晶片化量子密 编分發系統技 術	量子密鑰分發,提供了一種		技術處	前瞻技術研
	23	110		安全的加密方式,可保護未			究計畫
				來資訊通訊安全。			
				量子點色轉換技術結合藍光	穿戴裝置、車載、商用	經濟部	擴增實境之
				micro-LED 作為色轉換之架	顯示器。	技術處	高亮度暨低
	24	110	量子點色轉換	構,可以解決微間距高解析			功耗微型發
	24	110	技術	度全彩顯示模組之光色轉換			光二極體顯
				效率不足之關鍵問題。			示模組開發
							計畫
				micro-LED 顯示技術之高效	AR/MR、物聯網、穿戴	經濟部	擴增實境之
				率微晶粒(5 µm size)製作以	裝置與積體式光傳輸,	技術處	高亮度暨低
	25	110	高精度 micro-	及小尺寸 LED 效率提升。	提供眾多具市場前景之		功耗微型發
	25	110	LED 製程		系統產品機會。		光二極體顯
							示模組開發
							計畫

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫名稱
				Micro-LED 受惠於其卓越顯	micro-LED 電視、顯示	經濟部	工研院創新
				示特性表現 (如亮度、對	屏、車用、電競螢幕等	技術處	前瞻技術研
				比、反應速度等),使其成為	應用產品。		究計畫
				備受注目的顯示技術之一。			
				然則,因 micro-LED 顯示技			
				術主要係透過高精度封裝將			
				巨量微型元件週期性地排列			
				於驅動基板上,主要技術困			
				難點在於有效的良率控管以			
	26	110	自由尺度柔性	滿足顯示應用之良率需求;			
	26	110	拼接技術	此外,為滿足創新顯示應用			
				情境 (如車載),整合柔性基			
				板之顯示架構需求亦逐漸增			
				加。本技術主要透過導入高			
				精度模組拼接、微孔徑雷射			
				定位鑽孔及模組間微細線路			
				跨接技術於薄型化 micro-			
				LED 柔性顯示模組上,以此			
				達成具備大尺寸之自由尺度			
				柔性顯示器開發。			
				整合 micro-LED 微型顯示器	AR/MR、智慧眼鏡等產	經濟部	工研院創新
	27	110	智慧運動眼鏡	與微型感測陣列眼追蹤技術	品應用。	技術處	前瞻技術研
	27	110	光機模組	於智慧眼鏡應用,開發先進			究計畫
				智慧眼鏡光機系統。			
半導體				本研究使用三種不同低溫接	電子零組件與產品。	經濟部	物聯網尖端
電子構				合材料進行低溫接合製程評		技術處	半導體技術
裝				估,使用 Toray FC3000WS			計畫
				接合機進行 dummy 等級之			
				Chip on Chip(CoC)製程,藉			
	20	28 110	超低温接合技	由 SEM 橫截面觀察接合面			
	28		術開發	微結構,進而選擇合適的低			
			温接合材料進行 30μm-pitch				
				微凸塊製程,藉由電性量			
				測、溫度循環測試與高溫儲			
				存測試評估其電性穩定度及			
				熱穩定度。			

技術	項	產出				委辦	計畫
類別	次	年度	技術名稱	技術特色	可應用範圍	單位	名稱
				隨著現今	電子零組件與產品。	經濟部	物聯網尖端
				FOWLP/FIWLP/WLCSP 的		技術處	半導體技術
				蓬勃發展,其共同面臨之挑			計畫
				戰為如何有效降低模封製程			
				產生的翹曲。本研究旨在開			
				發 12 吋晶圓級模封製程,			
	29	110	晶圓級模封製	藉由翹曲量測選擇最佳的製			
			程技術開發	程方式。使用本計畫開發的			
				特殊夾治具進行後烘烤,可			
				有效降低 85% 晶圓及模組翹			
				曲量,成功降低 3.5 cm*3.5			
				cm 之模組翹曲量至 20 μm			
				以下。			
				建立 Hybrid bonding 無銲錫	IoT 元件微型化、感測	經濟部	物聯網尖端
				銅對銅直接接合的 CoW 組	器與 IC 整合之異質組	技術處	半導體技術
				· 裝技術,高精度單晶片對位	裝。		計畫
	30	110	異質整合封裝 技術	接合 (對位誤差≦±0.3μm) ,			
				建立超細間距組裝流程(Cu			
				pad pitch≦ 6 μm)異質晶片			
				整合。			
				開發高精度對位及低溫接合	記憶體,AI 晶片,影	經濟部	AI on chip
				方法,將多種不同功能晶片	響感測器,高速傳輸。	技術處	終端智慧發
				利用系統級封裝技術整合,			展計畫
	31	110	多晶片堆疊整	實現異質整合封裝架構,記			
			合封裝技術	憶體、AI 晶片、影像感測器			
				或高速傳輸需求之智慧裝置			
				均需要此技術。			
			1.1 ## 14+ /	針對封裝常見散熱議題及處	半導體、電子、功率半	經濟部	可程式 3D
	32	110	封裝模組之熱	理方式,透過模擬分析於初	導體、封裝 。	技術處	異質集成技
			阻模擬分析	期探討並解決根本問題。			術計畫
				奈米雙晶銅具有抗電遷移與	半導體,IC,智慧製	經濟部	物聯網尖端
				較好的機械性質,此材料導	造。	技術處	半導體技術
				入 RDL 製程整合中,並完			計畫
	33 110			成高密度且具<111>優選方			
				向之晶格,其中 nt-Cu RDL			
		110	奈米雙晶銅	表面有<111>晶面高達			
				99.34%,而 nt-Cu array 的			
				pad 表面晶格方向有將近			
				80.61%為<111>方向,能夠			
				在12 吋晶圓電鍍12 吋晶圓			
				級之奈米雙晶銅。			

技術 類別	項次	產出 年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
			طدا المراجع المالية المالية	以 Package 與模組板的高速	記憶體封裝設計、模組	經濟部	AI on chip
		110	SiP構裝設計模	電性分析與模擬的需求為出	板傳輸線設計。	技術處	終端智慧發
	34	110	擬分析作業程	發點所建置的參考作業程			展計畫
			序	序。			
				透過中介層內埋技術與扇出	邊緣運算,AI智能運	經濟部	AI on chip
				型封裝技術整合提供一個高	算模組,HPC,高速運	技術處	終端智慧發
			EIC 封裝架構	速傳輸與高頻寬的傳輸介面	算模組,感測器。		展計畫
	35	110	與製程開發	給異質整合多晶片進行高速			
			六衣任所放	運算,藉此架構達到接近			
				2.5D IC 封裝架構的性能與			
				較低的封裝成本。			
				超薄型/軟板型 TGP 設計技	可攜式產品,邊緣運算	經濟部	AI on chip
			FCCL-TGP 元	術,提供關鍵技術諮詢服	裝置。	技術處	終端智慧發
	36	110	件開發與驗證	務,例如優化設計、模擬分			展計畫
			, , , , , , , , , , , , , , , , , , ,	析、測試驗證,以及散熱整			
				合設計相關之諮詢服務。			
			RDLFirstFan- Out 製程	可在 12"平整基板上進行 ≥	Chiplet 異質整合,扇出	經濟部	AI 晶片異
	37	110		2um/2um 的細線寬線距 及	型(Fan-out)封裝技術。	技術處	質整合模組
				RDL≥2 製程。			前瞻製造平
							台計畫
			高速電鍍銅凸	1. 高速銅電鍍技術	1. 3DIC	經濟部	可程式 3D
	38	110	塊與重分佈層		2. Fan-out	技術處	異質集成技
			技術		3. Bumping process		術計畫
			TSV 預製核板	1. High density TSV array 2.	1. 3DIC	經濟部	可程式 3D
	39	110	製程技術	TSV open density > 3%	2. Si interposer	技術處	異質集成技
						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	術計畫
			有機中介層無	1. Maskless	1. Organic interposer	經濟部	可程式 3D
	40	110	光罩 10 um 導	2. 有機中介層乾膜壓合	2. PCB 產業	技術處	異質集成技
			通孔成型技術		Ender all A To D N N	1- 1- 1-	術計畫
				實現在基板上壓合厚膜類型	厚膜類型的介電層或增	經濟部	可程式 3D
			七城 中人尼尔	的介電層或增材層,可搭配	材層的導通孔製作。	技術處	異質集成技
	41	110	有機中介層無	使用雷射鑽孔技術在無光罩 時一樣的制作出召佈在10			術計畫
		110	光罩 10 um 導	時一樣能製作出孔徑在10 mm,以上的道通引, 符合新			
			通孔成型開發	um 以上的導通孔,符合新 世份的各只做小化發展複熱			
				世代的產品微小化發展趨勢			
				之需求。			

技術	項	產出	技術名稱	技術特色	可應用範圍	委辨	計畫
類別	次	年度				單位	名稱
				Chiplet 的彈性架構,異質整	Chiplet 異質整合,扇出	經濟部	可程式 3D
				合(Heterogeneous Integration)	型(Fan-out)封裝技術。	技術處	異質集成技
				不同製程或不同材料的裸晶			術計畫
				(Die), 先將晶片鑲埋在基板			
				內部。接者進行封膠			
				(Molding)。後續將封膠基			
	42	110	Chip First Fan-	板與載具作分離。由於封膠			
			Out 製程評估	基板的面積比晶片大,可以			
				散出(Fan-Out)方式製作於			
				塑膠模上,如此便可容納更			
				多的 I/O 接點數目。可以在			
				效能與成本上取得更佳解決			
				方案,帶動新一波的晶片整			
				合技術發展。			
				SUSS 機台使用厚光阻 AZ-	光阻特性評估及應用測	經濟部	可程式 3D
				9260 的代理商(景明)告知從	試。	技術處	異質集成技
				製造商默克公司得到了通			術計畫
				知,由於 AZ-9260 含有某種			
			AZ-10XT 取代	成分(PFOS表面活性劑),			
	43	110	AZ-9260 之黄	不再提供 AZ 9260, 原廠建			
	43	110	光製程開發及	議使用一個無 PFOS 的替代			
			乾蝕刻評估	產品 AZ-10XT 其有很大程			
				度與 AZ-9260 相同。因此本			
				技資即評估用 AZ-9260 的製			
				程參數用於 AZ-10XT,測試			
				是否能取代 AZ-9260。			
				向量網路分析儀(Vector	SiP 封裝量測。	經濟部	可程式 3D
				Network analyzer)為一種在		技術處	異質集成技
				RF 量測上應用的儀器,主			術計畫
				要用以量測線性微波網路的			
				特性。向量網路分析儀不僅			
				可以量測信號的大小			
				(Magnitude),同時可以量測			
	44	110	向量網路分析	信號的相位(Phase),所以它			
			儀量測理論	不僅可以量測具有大小的物			
				理量,還可以量測如:輸入			
				阻抗 Zin、反射係數、頻率			
				響應等具有大小及相位的			
				物理量,本份量測理論報告			
				將說明向量網路分析儀的理			
				論基礎,與如何正確與適當			

技術 類別	項次	產出 年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫名稱
				地善用 RF 量測儀器。			
	45	110	垂直式雙面向 量测之校正方法	向量網路分析儀 (Vector Network Aanlyzer) 是一個重響路外所 (Vector Network Aanlyzer) 是一個個協 RF 測試儀 使是一個協 B 期間	SiP 封裝量測。	經濟部技術處	可程式 3D 異質集成技 術計畫

技術類別	項次	產出 年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫名稱
				在面對少量多變的半導體世	高腳數邏輯 IC (High	經濟部	可程式 3D
				代, 傳統形式高度較矮的銅	pin logic) 記憶體及行	技術處	異質集成技
				錫凸塊接點已不敷使用,因	動裝置 (Memory &		術計畫
				此對於較大高度之銅柱	Mobile) LED 次封裝		
				(copper pillar)需求日益增	(submount) 車用電子		
				加,為製作此高度之銅柱,	元件 (Automotive) 生		
			厚膜光阻去光	相對應之厚型乾膜式光阻相	物醫療裝置 (Medical		
	46	110	阻製程評估報	關製程日益重要。本案購置	devices) •		
			告	之乾膜式光阻去除清潔與有			
				機顯影複合機是將已完成銅			
				柱製程後之乾膜式光阻完全			
				去除,並將晶片表面加以清			
				製程需求,並利於接續之後			
				相關製作流程。			
				本技術鎖定可程式 3D 架	半導體產業。	經濟部	可程式 3D
			可程式異質整	構、TMV 製程、內埋晶	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	技術處	異質集成技
	47	111	合技術	片、Passivation layer 及相關		1211192	術計畫
				應用。			W121 m
				本技術鎖定智慧晶片、細線	半導體產業。	經濟部	AI 晶片異
			異質整合模組	寬製程、laser release layer、	1 可短注示	技術處	質整合模組
	48	111	技術	passivation layer、Fan-out 技		7文7时 灰色	前瞻製造平
			12119	術與應用。			台計畫
				本技術鎖定瑕疵檢測、低翹	半導體產業。	經濟部	類載板 AI
				本投侧頻足收艇	十 守 脰 庄 未 。	技術處	製製板 AI 感測模組最
	49	111	類載板 AI 模組	術及其應用。		1文的 处	適化架構技
	49	111	技術	例			術暨應用檢
				本技術鎖定中介層內嵌式基	半導體產業。	經濟部	測計畫
			異質整合架構	本技術頻及平介層內嵌式基 板設計、TGP lid 散熱模	丁可阻 <u>性</u> 素 °	經濟部 技術處	AI on chip 終端智慧發
	50	111				技術 処	
			技術	組、晶圓級低溫接合、小晶			展計畫
				片架構及其應用。	小鸡叫子业	- m 12	4 4 1 4
		111	智能運算模型	本技術提供 AI 智能轉單系	半導體產業。	工研院	自有計畫
	51	111	技術	統、超低損耗基板元件技術			
				及其應用。	小 吳 四中 平 亦		5 to 1 to 2
		111	智能運算模型	本技術提供 AI 智能轉單系	半導體產業。	工研院	自有計畫
	52	111	技術	統、超低損耗基板元件技術			
				及其應用。			

技術 類別	項次	產出 年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫名稱
任意形				因應智慧生活發展趨勢須建	任意形態設備之空間建	經濟部	任意形態與
態顯示				立 3D 多維度設施與製程技	置規劃與完成內容,可	技術處	虚實融合顯
與感測			3D 多維度控溫	術,故需建置對應的 3D 多	提供作為任意形態之貼		示系統開發
製造技			貼合熱壓與取	維度控溫貼合與熱壓設備系	合熱壓與取放設備建置		計畫
術			放設備系統無	統之無塵室空間(Class 1,000)	廠務空間參考,其中任		
	53	110	塵室空間	與廠務系統,使技術開發順	意形態設備所製作完成		
			(Class1,000)與	利進行。	之成品可應用於車載顯		
			廠務系統建置		示器、車載感測器、白		
			報告		色家電、戶外透明顯示		
					看板、曲面看板等應		
					用。		
				因應智慧移動發展趨勢,開	3D 多維度適形化電子	經濟部	任意形態與
				發圖案偏差£3mm 之高精度	應用領域包含消費電	技術處	虚實融合顯
			3D 多維度適形	適形化模塑電子車用中控台	子、醫療保健、車用電		示系統開發
	54	110	化電子製程整	■ 互動模組,未來可應用於智	子、白色家電、穿戴式		計畫
			合與成型技術	 慧車艙之儀表板、中控台、	 裝置等。		
				 把手、天窗等,兼具科技時			
				尚感。			
取像與				 已完成慣性感測器、相機、		經濟部	任意形態與
影像處				透明顯示器之校正裝置及程	零售:智慧櫥窗或展售	技術處	虚實融合顯
理技術			顯示感知校正	式整合。同時建置校正實驗	櫃;育樂:展館智慧展		示系統開發
	55	110	技術	室,包含高精度自動控制系	示窗; 醫療:手術導		計畫
				統、照度及色溫調整,適用	航。		. —
				於多種校正需求。			
				本系統以智慧眼鏡平台所開	工廠管理、遠距裝機、	經濟部	跨域 3D 視
				發之辨識與空間定位軟硬體	遠距操作教學、遠距維	技術處	覺指導系統
				規格及各單元功能規格,平	修。	3211,32	整合計畫
				台可應用於遠程影音協作服			
	56 110	跨域 3D 視覺	務系統,結合擴增實境眼鏡				
		指導系統整合	以及遠距維修引導服務功				
			技術	能,讓現場工作人員與後台			
				管理人員可以即時雙向溝			
				通,有效率地排除設備組裝			
				或維修時遭遇之問題。			

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
類別	- 次	110	自動重新定位空間掃描技術	運用已開發之六自由度方位 追蹤技術,建立虚物與實物 正確的對應方位、尺寸及距離。使用標記測試平均偏差 6.4 mm@lm(<1%)。及可支 接 2D&3D 數位內容混合實 境內容流程編輯工具,讓使 用者能快速、精準且正確地 進行 SOP 設計。 本技術用 於混合實境(Mixed Reality, MR)頭戴式裝置的自動重新 定位(relocalization)空間掃描 技術。在失去追蹤資訊後, 能結合廣角相機取得的影像 及慣性感測器(Inertial Measurement Unit,IMU)資 料,偵測空間的影像特徵及 六軸方位,進行自動重新定 位,為 VI-SLAM (Visual Inertial Simultaneous Localization and Mapping)的	建立虚物與實物正確的 對應方位、尺寸及距離 (平均偏差<1%)。 在重 複繞行 40 公尺的路程 內,3D 位置平均差異 <1 公尺。	單位 經濟 技術	名稱 次智能研環境 機械 一次
	58	110	智慧運動眼鏡 光機模組技術 方案	關鍵技術。 本技術以「高亮度 microLED 視線互動顯示之 智慧運動眼鏡系統雛形開 發」為核心,透過結合物件 與視線對位融合運算、定位 辨識追蹤及校正、Metalens 型 Micro LED 顯示、Eye- tracking 眼球追蹤, 以整合 感測與顯示陣列技術進行運 動眼鏡光機模組開發,可導 入元宇宙應用中。	?模擬校正:靜態虛實 影像融合精度檢測誤差 <1 pixel? 虛實影像融 合:虛實影像融合視覺 等效誤差<10 mm。	經濟部技術處	工研院創新前瞻技術研究計畫

技術	項	產出	14 15 15 150	11 th 11 2	丁库田铁国	委辨	計畫
類別	次	年度	技術名稱	技術特色 	可應用範圍	單位	名稱
				CPOT 疼痛評估系統用於	CPOT 臉部表情疼痛辨	經濟部	工研院創新
				ICU 重症病房,是根據	識率在二分類下,準確	技術處	前瞻技術研
				CPOT 規範,對重症病患進	度達 92.21%。		究計畫
				行疼痛評估, 這項研究與台			
				中榮總合作,分別對病患之			
	50	110	人體疼痛智慧	臉部表情,肌肉緊張度,肢體			
	59	110	感測系統	動作與生理訊號進行實驗分			
				析,發現臉部表情對疼痛識			
				别最具有鑑别姓, 臨床上收			
				集了340位病患,智慧型AI			
				疼痛評估系統辨識率在二分			
				類下可達到 92.21%。			
				建置多元感測元件驗證檢測	• 完成使用機器手臂	經濟部	工研院環境
				平台,空間定位自由度:6-	進行 6-DOF AR 眼鏡虛	技術處	建構總計畫
				DOF、誤差:中心區域	實影像融合檢測,中心		
				(50%FOV)<1%,提供 AR 穿	區域檢測誤差		
				透式顯示裝置虛實影像疊合	<0.64%。 ? 結構光		
				檢測服務。 異質深度相機	RGB-D 深度相機		
				校正與驗證平台可應用於多	(baseline=31.8mm) 1m		
			異質深度相機	種深度相機與感測器之校正	內平均對位誤差		
	60	110	校正與檢測技	及驗證。本技術構建 RGB-D	0.2794% ? Active stereo		
			術	深度相機檢測與校正平台,	RGB-D 深度相機		
				可應用至機器視覺、自駕感	(baseline=125mm) 1m		
				知、智慧醫療、AR、VR 與	內平均對位誤差		
				MR 等裝置上,提供相關裝	0.0784% 建置 3D 空		
				置生產業者產線上之校正與	間定位所使用之 RGB-		
				檢測能力,提升精度、良率	D深度相機檢測與校正		
				與單位時間產量。	平台,lm內平均檢測		
					與對位誤差<0.5%。		

技術	項	產出	技術名稱	技術特色	可應用範圍	委辨	計畫
類別	次	年度	3X 713 712 713	4X784 44 C	1 /6 /11 年0 庄1	單位	名稱
				常用於穿戴裝置之整合方	虚擬教育訓練應用 穿	經濟部	次世代環境
		l		案,包含精準手勢指令偵測	戴裝置觸覺回饋	技術處	智能系統技
				與觸感回饋:前者 整合2D	AR/VR 互動控制裝置		術研發與應
				與 3D 深度資料進行手部三	觸覺感測器。		用推動計畫
				維骨架模型偵測與手勢辨識			
				的技術,除了可以提供二維			
				静態手勢,亦增加了二維動			
				態手勢、三維動態手勢,適			
		1 110		合多種應用情境。觸覺回饋			
				提供振動波形資料庫,客戶			
				可自訂達 255 種波形,使用			
			多重觸感擬真	標準 BLE 規範建構客製化			
	(1			藍牙振動觸覺回饋服務與			
	61		回饋及高精度	BLE 傳輸格式(單次傳輸			
			手勢辨識技術	10~20bytes),模組化設計,			
				提供震動回饋與衝擊回饋兩			
				種模式,已有 VR 手套與球			
				棒打擊回饋兩種驗證產品型			
				態,內部 DSP 回饋演算法速			
				度達 60Hz 以上,單次運算			
				速度為 16ms。 提供			
				windows、android、linux 各			
				式藍牙 API 介面嫁接至各式			
				頭戴式平台,以上從軟、			
				韌、硬體整合觸覺的完整解			
				決方案。			
				本技術是系統性的解決方	AR/MR、穿戴裝置。	經濟部	智慧感知視
			投動上品件店	案,以提供跨域互動如遠距		技術處	聽與觸覺互
	62	111	移動式物件偵 測與量測技術	訓練等,結合 3D 互動、力			動科技系統
			浏	回饋手套設備、與 3D 變形			技術研發計
				即時內容呈現。			畫(1/4)
				輕量化且直觀的光源偵測演	單點光源估測,偵測光	經濟部	次世代環境
				算法,針對混合實境繪圖進	源位置、面積和強度,	技術處	智能系統技
	63 110		對於混合實境	行補強。透過分析全景圖的	補差成像陰影角度誤差		術研發與應
		110	成像使用動態	特徵資訊,運用動態閾值的	小於 30 度。		用推動計畫
		110	閾值的光源重	方法,高效率的篩選出突出			
			建法	的光源資訊,運用此資訊,			
				可以有效增進混合實境繪圖			
				時虛擬物件的光影效果。			

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫名稱
				立體成像主要需模擬左右眼	1.給定雙眼距離及匯聚	經濟部	次世代環境
				所看的不同影像,原始360	點距離,利用偏軸投影	技術處	智能系統技
				影像是以球心為相機拍攝的	法在 360 影像上計算出		術研發與應
				影像,透過不同的投影方	左右眼對應之影像。2.		用推動計畫
		110	360 度影像之	式,將360影像投影至虛擬	根據 360 影像估測相對		
	64	110	立體成像技術	的左右眼即可得到不錯的立	深度資訊,調整上述左		
				體效果,再加上深度估測,	右眼對應之影像,進一		
				進一步將 360 影像依深度變	步加強立體效果。		
				形在投影可得到更好的立體			
				成像效果。			
				本技術基於影像處理以及相	於 Unreal 平台上建置自	經濟部	自動駕駛感
			白私帮助源名	關對位技術架構,於實景中	動駕駛邊角案例虛實	技術處	知次系統攻
			自動駕駛邊角	合成虛擬物件結合影像處理	(AR)影片整合技術(結		堅計畫
	65	110	案例虚實合成	技術,達到邊角案例資料集	合錄製之 GPS、影像		
			暨資料擴增技 術	之擴增。	後,加入 NHTSA Pre-		
					crash 腳本對位合成為		
					邊角案例資料集)。		
				偵測戶外場景光源,再根據	使用 360 相機拍攝戶外	經濟部	5G+系統暨
				光照參數以及虛擬物體的材	場景的 360 影像後,以	技術處	應用淬鍊計
				質設定,即時地產生符合實	該影像來設定環境光照		畫
				際物理現象的材質渲染和陰	以及虛擬場景,再於三		
				影遮蔽等成像效果,使虛擬	維空間中太陽的方向設		
				物件能無縫融合於真實場景	定一個用來模擬太陽光		
				中,並具有光影即時互動的	的平行光源,最後交由		
				特性。技術內容包含:(1)戶	即時擬真渲染技術做繪		
			户外光源即時	外光源擷取;(2)虛擬場景建	製,以得到最後影像,		
	66	110	渲染技術	立;和(3)即時擬真渲染等。	單張畫面成像時間小於		
					20ms。 *環境光照:強		
					化物件與背景的一致		
					性; *虚擬背景:產生		
					背景場景的幾何架構與		
					影像; *平行光源:產		
					生陰影; *即時擬真渲		
					染:根據以上的設定,		
					快速成像。		

技術	項	產出				委辨	計畫
類別	次	年度	技術名稱	技術特色	可應用範圍	單位	名稱
				本技術包含運動賽事畫面中	基於兩個網路深度學習	經濟部	5G+系統暨
				虚擬廣告置入,可貼齊於運	模型,於29.8	技術處	應用淬鍊計
				動場地,結合電腦視覺後處	TFLOPS(FP16)晶片算		畫
			虚實影像融合	理,完成前景分割功能,避	力下,1920x1080 影像		
	67	110	技術	免虛擬廣告遮蔽前景物件,	輸入,於前景分割功能		
				達到運動賽事畫面虛實融合	開啟下,虛擬廣告置入		
				目標,進而加值運動賽事效	FPS 可達 75。		
				益。			
記憶體				(1)鐵電記憶體(FRAM)的低	嵌入式記憶體。	經濟部	物聯網尖端
技術				耗能表現最為優秀,擬整合		技術處	半導體技術
				NVM-MCU 與電源管理技術			計畫
				實現超低功耗物聯網終端元			
				件。(2)三維製程技術成功微			
			鐵電隨機存取	縮 FRAM 元件平面面積,其			
	68	110	記憶體元件	操作速度、電荷密度與讀寫			
			(FRAM)	壽命皆展現優異水準。(3)利			
				用 FRAM 破壞性讀取特性,			
				其專用周邊讀寫電路設計與			
				模擬,進行產品下線、測試			
				與分析。			
				(1)可微縮性、直接電流/電	非揮發性快取記憶體、	經濟部	物聯網尖端
				壓驅動、高速讀取等特性,	嵌入式 SRAM 記憶體	技術處	半導體技術
				並具解決 MCU 所需之嵌入	應用、IoT 裝置硬體加		計畫
			自旋磁性記憶	式 SRAM 技術,廣泛應用在	密應用。		
	69	110	體技術	嵌入式系統。(2)成功設計新			
			(SOTMRAM)	式元件結構與製程,並於			
				SOT 薄膜層精確控制鐵磁薄			
				膜與絕緣 MgO 層厚度與均			
				与度,完成雛形元件開發。			
				寫入速度快、消耗功率低、	半導體產業。	經濟部	臺灣資安卓
				耐久度高之非揮發性記憶		技術處	越深耕-半
			磁性記憶體技	丹 。			導體及資通
	70	111	術				訊供應鏈資
							安關鍵技術
							發展計畫
			工工 九上 一 九 日曲 11	寫入速度快、消耗功率低、	半導體產業。	經濟部	AI on Chip
	71	111	磁性記憶體技	耐久度高之非揮發性記憶		技術處	終端智慧發
			術	哈 ②			展計畫
			-V. ld 20 ld 124 11	寫入速度快、消耗功率低、	半導體產業。	經濟部	可程式 3D
	72	111	磁性記憶體技	耐久度高之非揮發性記憶		技術處	異質集成技
			術	哈 ②			術計畫

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
軟性混				因應長期並準確監控生理訊	軟性混合電子應用領域	經濟部	軟性混合電
合電子				號需求,需開發高輸入阻抗	包括消費電子、醫療保	技術處	子加值技術
(FHE)				低壓迫耦合式感測模組,本	健、運動健身、車用電		與系統應用
			高輸入阻抗耦	技術提供高輸入阻抗低壓迫	子、模塑電子和工業自		開發計畫
	73	110	合式感測模組	耦合式感測模組前端電路設	動化等;應用產品包括		
			設計技術	計與訊號處理演算,兼顧穿	感測器、智慧織物、顯		
				戴舒適性與提高生理訊號偵	示器、電路板、電池、		
				測準確度。	RFID 等。		
				因應未來智慧生活應用需	軟性混合電子應用領域	經濟部	軟性混合電
				求,工研院以軟性混合電子	包括消費電子、醫療保	技術處	子加值技術
				系統設計架構,開發可雙軸	健、運動健身、車用電		與系統應用
				彎曲之薄型 EMG 模組,通	子、模塑電子、航太和		開發計畫
			扭轉可靠度之	過10萬次雙軸彎曲測試	工業自動化等;應用產		
	74	110	機電整合設計	(±300 符合人體運動舒適需	品包括感測器、智慧織		
			技術	求),未來可應用於各種輕薄	物、顯示器、電路板、		
				之穿戴電子裝置(生理感	電池、RFID 等。		
				測)、智慧織物裝置(電子皮			
				膚)與智慧移動裝置(座艙內			
				部的坐墊、安全帶)等。			
				因應未來智慧生活應用需	軟性混合電子應用領域	經濟部	軟性混合電
				求,工研院以軟性混合電子	包括消費電子、醫療保	技術處	子加值技術
				系統設計架構,開發 0.4cm	健、運動健身、車用電		與系統應用
			衝擊可靠度之	耐衝擊之薄型 EMG 模組,	子、模塑電子、航太和		開發計畫
	75	110	機電整合設計	通過 IEC 62262 IK06 衝擊規	工業自動化等;應用產		
	13	110	技術	範,未來可應用於各種輕薄	品包括感測器、智慧纖		
			1274	之穿戴電子裝置(生理感	物、顯示器、電路板、		
				測)、智慧織物裝置(電子皮	電池、RFID 等		
				膚)與智慧移動裝置(座艙內			
				部的坐墊、安全帶)等。			
				因應軟性混合電子系統整合	軟性混合電子應用領域	經濟部	軟性混合電
				設計需求,建立結構或應力	包括消費電子、醫療保	技術處	子加值技術
				轉換電性訊號的多重物理模	健、運動健身、車用電		與系統應用
			軟性混合電子	型整合技術,其中核心技術	子、模塑電子和工業自		開發計畫
	76	110	設計平台建構	包含應力與電性整合模型與	動化等;應用產品包括		
			技術	可拉伸線路模型,並以此核	感測器、智慧織物、顯		
				心技術等校模型發展成設計	示器、電路板、電池、		
				工具,協助使用者快速開發	RFID 等。		
				其軟性混合電子系統。			

技術	項	產出	11. 11m 19 450	11. 11. 14. 4	一个市内林园	委辨	計畫
類別	次	年度	技術名稱	技術特色 	可應用範圍	單位	名稱
				因應未來智慧生活發展趨	消費電子、醫療保健、	經濟部	軟性混合電
				勢,工研院以軟性混合電子	運動健身、車用電子。	技術處	子加值技術
				系統(Flexible Hybrid			與系統應用
			高感度耦合感	Electronics, FHE)及面板級			開發計畫
				封裝重佈線層(Re-			
	77	110	測模組設計技	distribution Layer, RDL)核			
			術	心技術為基礎,開發可隔離			
				0.3mm 衣物厚度之非接觸耦			
				合式肌力感測運動袖套,未			
				來可應用於智慧育樂、運動			
				科技與智慧健康照護等場			
				域。			
				利用非接觸式高辨識度應變	軟性混合電子應用領域	經濟部	軟性混合電
				量測、三維應變應力轉換及	包括消費電子、醫療保	技術處	子加值技術
				對應之線路布局,提供可拉	健、運動健身、車用電		與系統應用
	78	110	可拉伸線路布	伸線路布局達到拉伸率 10%	子、航太和工業自動化		開發計畫
			局設計技術	對應的電阻變化率小於 10%	等;應用產品包括感測		
				的線路設計。	器、智慧織物、顯示		
					器、電路板、電池、		
					RFID 等。		
智慧製			and the same of the	本團隊除了可授權科專所開	晶片設計。	經濟部	AI on chip
造與智	79	110	記憶體內運算	發之 SRAM CIM macro 之		技術處	終端智慧發
能辨識			技術 	外、亦提供客制 SRAM CIM			展計畫
				macro 之設計。	含业体与朋友甘仁 工	- 海 - 加	D5C//C \$
				本技術提供準確且快速的微型工作之C会數	毫米波相關之基板,天	經濟部	B5G/6G 高
				型天線,AiP天線之S參數 及場型量測方法。主要分為	線,元件,電路特性測 試驗證。	技術處	頻高功率電 子元件與模
			超高頻晶片與		武伪双征。		五九仟 <u>與</u> 模 組計畫
	80	110	天線整合封裝	立。並提供超高頻天線量測			知可重
	80	110	測試技術	系統的轉台指令,透過			
			77 10 10 10 10 10 10 10 10 10 10 10 10 10	Socket 通訊介面控制轉台,			
				讓使用者可彈性的使用毫米			
				· 被天線量測系統。			
				(1) 影像感測與長距(200m)	77GHz 頻段 LRR,最	經濟部	自動駕駛感
				雷達,短距(50m)雷達三	大前視偵測距離:200m;	技術處	知次系統攻
			影像與雙雷達	者,以單板 PCB 整合之智	79GHz 頻段 SRR,最		堅計畫
	81	110	整合模組	慧感測融合模組(Hybrid	大前視偵測距離:50m。		
			(HybridRamera	RameraTM)。 (2) 硬體電路	影像感測同步顯示偵測		
			TM)	圖, PCB 布局設計, BoM,	物體距離與速度資訊。		
				實體電路板等。			
	<u> </u>		1	= .	l	L	

技術	項	產出	技術名稱	技術特色	可應用範圍	委辨	計畫
類別	次	年度	双帆石舟	双侧行已	7.他用 配图	單位	名稱
				本技術提供準確且快速的微	1. 2D, 3D Field pattern:	經濟部	工研院環境
				型天線,AiP天線之S參數	5GHz to 170GHz	技術處	建構總計畫
				及場型量測方法。主要分為	2. [S]: 10MHz to		
			mmWave 球面	軟體的操作及量測環境的建	170GHz		
	82	110	場天線室操作	立。並提供超高頻天線量測			
			技術	系統的轉台指令,透過			
				Socket 通訊介面控制轉台,			
				讓使用者可彈性的使用毫米			
				波天線量測系統。			
				陣列開關設計可以根據不同	IC 設計、先進構裝整	經濟部	可程式 3D
				的晶片需求及使用情境時透	合。	技術處	異質集成技
	02	110	陣列開關電路	過程式控制陣列開關的切換			術計畫
	83	110	件列用關电路	來達到不同的腳位連接,並			
				具有高速訊號傳輸的優化設			
				計。			
				發展硬體防護技術的新型安	安全防護機制之晶片。	經濟部	臺灣資安卓
				全晶片通道電路設計,包括		技術處	越深耕-半
				AES、ECC 與 SHA 等加解			導體及資通
	0.4	110	新型安全晶片	密認證演算,並實現 FPGA			訊供應鏈資
	84	110	通道電路設計	相關系統驗證硬體電路 IP			安關鍵技術
				功能。可作為廠商資安需求			發展計畫
				評估,產品資安升級之基			
				礎。			
				提供客製化 AI 加速器 IP 與	適用於各式影像推論引	經濟部	物聯網尖端
			AT 1 12 12 12 11	晶片技術、可根據所需的場	擎之應用,包含物件分	技術處	半導體技術
	0.5	110	AI加速器晶片	域和模型,建議最佳的 AI	類、物件偵測等		計畫
	85	110	(AIAccelerators	加速器規格,以提供快速客			
			ystemonachip)	製化與驗證服務、技術諮詢			
				並協助場域驗證。			
				提供 5 級 pipeline,32-bit	超低功耗晶片設計應	經濟部	物聯網尖端
				RV32-IM 指令集的 RISC-V	用,包括微處理器、長	技術處	半導體技術
				微控制器與其嵌入式系統晶	閉順開控制及運算等。		計畫
			All 120 A 14	片,包含 write-back			
			微控制器系統	caches、支援外部 DRAM,			
	86	110	晶片	可處理需大容量的 AI 運算			
			(MCUsystemon	使用、可搭配新興非揮發記			
			achip)	憶體			
				RRAM/FRAM/MRAM、支			
				援非揮發運算等,進行程式			
				瞬開執行和斷電資料保存。			

技術 類別	項次	產出 年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫名稱
				提供高精度控制晶片,以自	伺服控制系統、工具	經濟部	工業伺服電
				主化之關鍵技術,提升國內	機。	技術處	機節能驅控
				工業伺服電機產業競爭力。			關鍵組件開
				藉由動態雜訊消除技術、電			發計畫
				流補償校正技術和串列編碼			
	0.7	110	高精度控制晶	訊號處理技術,以晶片層級			
	87	110	片設計	整合電機驅動與轉動回授訊			
				號處理,良好介接前級功率			
				元件和電機本體與後級處理			
				器,可容忍相與相間誤差,			
				提升保護反應速度,且整體			
			成本降低,功耗減少。				
			AI 加速器晶片	提供可軟體定義生成的 AI	適用於各式影像推論引	經濟部	AI on chip
			系統	加速器晶片系統技術、提供	擎應用,包含物件分	技術處	終端智慧發
	88	110	(Reconfigurable	可變運算效能的系統解決方	類、物件偵測等。		展計畫
	00		andscalableAIA	案、以及軟體工具套件、設			
			cceleratingsyste	計諮詢、客製化設計服務。			
			m)				
				類針對類比混和記憶體內運	晶片設計。	經濟部	AI on chip
			類比混合記憶	算晶片系統設計提供(1)晶片		技術處	終端智慧發
	89	110	親	系統架構探索技術(2)系統層			展計畫
	89	110	照内連昇登合 晶片技術	級模擬技術(3)FPGA 驗證平			
			前 月 找 侧	台(4)超低功耗類比前端電路			
				IP。			
				自主開發之智慧感測器之低	智慧物聯網之感測器前	經濟部	AI on chip
				雜訊類比前端接收器電路,	端讀取電路。	技術處	終端智慧發
			智慧感測器之	該電路可讓訊號路徑上有時			展計畫
	90	110	低雜訊類比前	間增益之控制補償,等效上			
			端電路技術	提高信號雜訊比,此電路未			
				來可應用於人工智慧類比前			
				端系統。			
			適用於自動測	測試載板之高速通道設計、	建置 IC 與 WLCSP 之	經濟部	AI 晶片異
	01	110	調用が自動例試設備之測試	模擬、分析與驗證技術以及	測試載板適用於自動測	技術處	質整合模組
	91	110	載板開發技術	分析流程,其適用於自動測	試設備。		前瞻製造平
			平人7人17门6公1人7门	試設備。			台計畫

技術	項	產出				委辨	計畫
類別	次	年度	技術名稱	技術特色	可應用範圍	單位	3 3 4 4 4 4 4 4 4 4
				本技術提供智慧雷達攝影機	系統校準後可達 100%	經濟部	自動駕駛感
				之鏡頭-雷達畸變校正演算	出廠精度。	技術處	知次系統攻
				法、同/跨車道動態校準演算			堅計畫
	0.2	110	雷達攝影機動	法,並於實車系統進行			
	92	110	態校準技術	Ramera 軟硬整合之功能驗			
				證,可提升系統資訊穩定度			
				與可靠度,增進產品附加價			
				值。			
				1.利用週期性供電特性進行	輸入電壓:20V~50V。	經濟部	低軌衛星通
			使用電子開關	重啟,不須額外增加定時啟		技術處	訊系統技術
	93	110	優化電源感測	動電路。			開發計畫
			設計技術	2.架構複雜度低,支援可擴			
				充性。			
				自動光學檢測 (AOI)上,提	影像瑕疵辨識。	經濟部	可程式 3D
				供智慧製造所需之AI技術		技術處	異質集成技
				方案時經常出現因生產良率			術計畫
				過高導致瑕疵或 NG 資料量			
				過少的問題,使得 OK/NG			
				類別的樣本數量差別甚大導			
				致模型推論結果失準,亦大			
		110		幅提高 AI 技術的導入門檻			
			極少瑕疵樣本	及與落地的困難,此技術確			
	94		之深度學習瑕	實可以快速解決AI產業的			
			疵篩選技術	最大痛點,所提出異常檢測			
				(anomaly detection; AD)之			
				少量資料智能視覺檢測方			
				案,希望當瑕疵影像或資料			
				為數不多、甚至完全沒有			
				時,仍可快速訓練,部屬瑕			
				疵檢測系統。優點如下:AD			
				網路可在無使用任何NG影			
				像時獲得>90%之準確率。			
				使用 Convolution Neural	廣播電台逐字稿服務、	經濟部	AI on chip
				Networks	災害通報逐字稿紀錄、	技術處	終端智慧發
				Transformer(Conformer)的技	智慧耳機語音助理、車		展計畫
				術,結合 CNN 的快速與局	用語音助理、YouTube		
	95	110	中文語音即時	部特徵學習,以及	影片中文字幕。		
			辨識	Transformer 的 attention 機制			
				與整體特徵學習,達到準確			
				度達 88%,辨識速度僅耗時			
				音檔長度 1/10。			

技術 類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱	
				此 3D-LITE 智能量腳系統主	AIoT 產業。	經濟部	AI on chip	
				要結合軟硬體之設計,並透		技術處	終端智慧發	
				過 AI 智能辯識來達到可以			展計畫	
				提供 2D 與 3D 之量測,可				
	96	110	AIoT 應用技術	以做到足型量測、足壓量測				
				之功能,未來可以擴充鞋類				
				資料建檔,利用 Big Data 大				
				數據分析,達到各種鞋型與				
				鞋墊之客製化。				
				wafer oxide fudion bonding	半導體,IC,智慧製	經濟部	AI 晶片異	
			前段製程與奈	低溫接合技術為 wafer 低溫	造。	技術處	質整合模組	
	07	97 110	用权 表 在 典 宗	接合減少製程之內應力與變			前瞻製造平	
	97		術		形誤差,並可以與 Cu 配合			台計畫
				게디	作 hybrid bonding,獲取最佳			
				的電性。				
				帳單辨識系統將針對帳單	航運、物流管理。	經濟部	AI on Chip	
				(Vendor Invoice) 進行文件辨		技術處	終端智慧發	
				識,處理範圍包含文字及圖			展計畫	
				形類型等格式,文字類型以				
				座標定位方式擷取相關文字				
	00	111	智能帳單辨識	內容;圖形類別將會適當的				
	98	111	系統	切割畫面後進行 OCR 辨識				
				轉為文字,此系統能處理繁				
				瑣且高度重複性質的文件建				
				檔動作,加速作業流程,有				
				效提升文件製作效率及人員				
				工作價值。				
				支援硬體適應性之 DNN 推	深度學習相關之模型推	經濟部	物聯網尖端	
				論加速技術,該技術可實際	論加速,如:智慧影像	技術處	半導體技術	
			深度學習模型	考慮硬體運算效能進行模型	監控、文件識別、行車		計畫	
	99	110	推論加速、壓	剪枝與量化。	即時物件偵測、產線瑕			
			縮技術		疵檢測、生醫影像診			
					斷等等物件辨識應			
					用。			

技術	項	產出				委辦	計畫
	次	年度	技術名稱	技術特色	可應用範圍	單位	名稱
				深度學習模型開發平台,提	深度學習相關之模型開	經濟部	物聯網尖端
				供一套系統化工具,降低各	發,如:智慧影像監	技術處	半導體技術
				行各業進入深度學習領域的	控、文件識別、行車即		計畫
				難度。該平台包含:(1)圖形	時物件偵測、產線瑕疵		
			深度學習模型	化模型編輯介面;(2)模型訓	檢測、生醫影像診斷		
	100	110	開發平台	練監測功能;(3)資料可視	等等物件辨識應用。		
				化、偵錯技術;(4)資料清洗			
				工具;(5)全自動超參數最佳			
				化程序;(6)模型終端裝置推			
				論最佳化等工具。			
				支援超參數值域限縮、超參	深度學習相關之模型訓	經濟部	物聯網尖端
				數搜尋、提早終止訓練技	練加速,如:智慧影像	技術處	半導體技術
				術、分散式訓練等方式,協	監控、文件識別、行車		計畫
1	101	110	深度學習模型	助減少投入訓練模型所需人	即時物件偵測、產線瑕		
			訓練加速技術	力,並在更短時間內達到需	疵檢測、生醫影像診		
				求的模型精確度。	斷等等物件辨識應		
					用。		
			EDG () 1 d	利用 FPGA 設計高精度 39ps	ATE · Measurement ·	經濟部	物聯網尖端
		440	FPGA-based 高 精度訊號延遲 控制器	可程式控制訊號延遲電路	TDC ·	技術處	半導體技術
	102	110		IP,應用在訊號產生器、量			計畫
				測等需求。			
			高速 PE 模組設 0 計技術	應用在 PCIe-based 之 PE 訊	ATE · Measurement ·	經濟部	物聯網尖端
1	103	110		號處理。	TDC。	技術處	半導體技術
							計畫
				因應 AI 應用具少量多樣,	ASIC · FPGA · SoC ·	經濟部	AI on chip
				將以特定領域應用(e.g.影像)		技術處	終端智慧發
				定義半通用 AI 晶片系統架			展計畫
				構,發展 AI 晶片設計,以			
			半通用 AI 晶片	滿足該領域各種產品的 AI			
1	104	110		運算需求;將特定領域常用			
			技術	之多數深度學習模型共用運			
				算加以晶片模組化,形成半			
				通用 AI 晶片架構,配合可			
				程式化軟體工具因應不同應			
				用需求。			
				開發的磁控微流體,利用磁	利用磁力於密閉的微流	經濟部	工研院創新
			磁控微滴生成	力產生奈米級微滴,低耗材	體環境中產生 1,000 顆	技術處	前瞻技術研
	105	110	磁控版周生成 技術	成本與低汙染風險。無須移	以上的微滴,微滴最小		究計畫
			1 2X 7/19	動檢體就可完成高效率、高	約 0.8nL,產生速率達		
				精準的 PCR 自動化檢測。	12.6 顆/秒。		

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
				高速 PXIe/PCIe Gen2 模組化	1. Channel Per Slot:	經濟部	工研院環境
				FPGA 平台技術;包含通用	16~32 ∘	技術處	建構總計畫
				型 Evaluation 平台、高速	2. Max. Clock Rate		
				DDR3 記憶體緩存介面;提	(MHz): 100 °		
				供 實驗、開發、設計之用	3. Vector Rate (MHz):		
				途;並同時提供客製化設計	0.5~200 °		
	106	110	晶片測試系統	服務。	4. No. of Timing Sets: 32		
	106	110	整合與驗證		5. No. of Edges: 4 °		
					6. Timing Formats:		
					NRZ, RZ, RO, RT,		
					SBC, SBO, SBZ,		
					SBT,HI,LO,OFF。		
					7. Edge Placement		
					Resolution: 39ps •		
				完成智慧型多重感應器整合	應用於智慧型工廠即時	經濟部	物聯網尖端
				平台技術之開發與場域雛型	線上監控設備。	技術處	半導體技術
		:	智慧型多功能	驗證,具備電力品質檢測分			計畫
	107	110	感應器整合平	析、機台溫度監控以及裝置			
			台技術	震動成因分析等功能,屬於			
				工業級之智慧型線上即時監			
				控系統產品。			
				建構異直整合系統層級多物	半導體產業。	經濟部	物聯網尖端
				理設計平台,包括情境導向		技術處	半導體技術
				驅動、晶片內架構設計、資			計畫
				料流的運算與封裝的模型			
				等,特別是 AI 的應用,提			
			異質整合多物	前 6~9 個月提供設計者模			
	100	110		擬分析效能、功耗、溫度與			
	108	110	理設計平台技	電源穩定性,可以做設計初			
			術	期的架構設計與各種元件的			
				置換(如: Foundry Process,			
				IP, Memory,			
				Package,),提前做設計			
				優化,縮短開發時程,提升			
				產品競爭力。			
			源 庄 组 羽 144 ml	Deep Learning Model	開發 CNN 最佳硬體化	經濟部	物聯網尖端
	109	110	深度學習模型	Optimization Technology	相關使用者。	技術處	半導體技術
			最佳化技術				計畫

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫
700.04				Power and Thermal-aware	應用於智慧手持裝置、	經濟部	物聯網尖端
			功耗與熱感知	ESL Platform Technology	字戴式裝置、物聯網等	技術處	半導體技術
	110	110	電子系統層級		應用之系統晶片與產品		計畫
			平台技術		設計。		
			L' mi en the A. T.	Sensor Integration Platform	智慧城市、智慧家庭、	經濟部	物聯網尖端
	111	110	感測器整合平 ,		工業控制、教學實驗等	技術處	半導體技術
			台		物聯網應用。		計畫
				針對人工智慧晶片設計提供	AI 加速器晶片設計。	經濟部	物聯網尖端
				下列技術(1)具多通道		技術處	半導體技術
				DRAM 記憶體資料存取之人			計畫
	112	110	人工智慧晶片	工智慧加速器架構(2)具資料			
	112	110	設計技術	與指令之混合式之資料型態			
				(3)AI 晶片架構探索自動化			
				技術(4)資料流排程系統與方			
				法。			
				提供 AI 晶片深度學習軟體	AI晶片的深度學習編	經濟部	AI on chip
				編譯環境,支援客制化	譯器與程式庫。	技術處	終端智慧發
				Operator Compute , Operator			展計畫
			深度學習編譯 技術	Schedule, Operator Tiling,			
	113	110		Code Gen 及 Runtime 等模			
				組,並整合編譯器框架與 AI			
				晶片 Backend,可將 NN 模			
				型編譯並進行運算優化,在			
				AI 晶片或模擬器上執行。			
				針對晶片系統設計設計提供	晶片設計。	經濟部	AI on chip
			晶片系統架構	(1)類比 AI 加速器架構之探		技術處	終端智慧發
	114	110	設計技術	索技術(2)類比 AI 加速器之			展計畫
			改制权机	系統層級模擬技術(3)類比			
				AI 加速器之排程技術			
				本技術應用於深度學習編譯	深度學習編譯器與執行	經濟部	AI on chip
				器,圖形層級異質晶片子圖	環境。	技術處	終端智慧發
				切割技術,透過分析神經網			展計畫
	115		深度學習計算	路學習模型的計算圖			
		110	子圖切割技術	(Computational Graph),依據			
		110	(SubgraphPartiti	異質後端硬體特性進行神經			
			on)	網路子圖切割與運算分配,			
				並分析分配後的運算圖,切			
				割成對應後端運算的子圖			
				(Subgraph) °			

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
				本技術應用於深度學習編譯	深度學習編譯器與執行	經濟部	AI on chip
		110		器之深度學習計算圖優化	環境。	技術處	終端智慧發
				TVM Relay 模組中,增加			展計畫
			RelayIR 轉	ONNX 格式產生模組,讓第			
			ONNX 之轉換	三方編譯軟體可以整合			
	116	110	技術	TVM 圖型優化,並將優化			
			(Relay2ONNX	後的計算圖轉化產生 ONNX			
			Converter)	格式之深度學習模型,以利			
				透過 TVM 進行異質晶片的			
				SoC 編譯軟體整合。			
				依據使用者設定之室內目的	空間聲響合成,合成之	經濟部	次世代環境
			か明設郷庁内	地,再以使用者所在位置進	室內導航聲響方向角度	技術處	智能系統技
	117	110	空間聲響室內	行節點式空間方向性聲響合	誤差小於30度。		術研發與應
			導航技術	成,進而以聽覺方式引導使			用推動計畫
				用者行走至目的地。			
				嵌入式感知次系統包含異質	1. DriveNet \ LaneNet \	經濟部	自動駕駛感
				感測融合、電腦視覺、深度	SignNet · LigntNet ·	技術處	知次系統攻
				學習三大部分,可客製化建	FreeSpaceNet 之 5 種深		堅計畫
				置不同需求之感知應用,如	度學習網路架構模型。		
				先進駕駛輔助系統(ADAS)	2. 多功能物件偵測辨識		
				演算法、深度學習物件偵測	引擎,如四輪車、兩輪		
				辨識演算法、異質感測融合	車、行人、號誌、燈號		
				演算法、軟硬體整合與系統	等。3. HDR、Dehaze、		
				優化技術、邊角案例之測試	Ghost Removal 影像前		
				與訓練標註資料產生技術。	處理庫。4. 光達、雷		
	118	110	嵌入式感知次		達、影像3種感測器融		
	110	110	系統技術		合庫。5. 多功能 ADAS		
					功能,如 LDWS、		
					FCWS · BCWS ·		
					DOA、BSD 等。6. 支		
					援多類型 SoC,包含		
					Qualcomm · Renesas ·		
					NXP、Nvidia 等。7. 支		
					援影像合成與電腦圖學		
					2種方式之邊角案例測		
					試與訓練標註資料產		
					生。		

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
224.44		1 2		本技術包含自駕車次系統開	於高通、瑞薩、NXP等	經濟部	自動駕駛感
	119 1:			發與人性化自駕車模擬技	■ 多款商售晶片完成感知	技術處	知次系統攻
				術,其包含感知次系統軟	模組開發,並於車規晶		堅計畫
			自駕車基礎共	體、路徑規劃、事件與環境	片完成路晶規劃與決策		
		110	通平台軟體工	情境式決策技術、安全性測	系統,可建置基於沙崙		
			具鏈	試模擬、高速測試模擬、舒	場域之各種交通情境與		
			適度測試模擬、擬真影片產	NHTSA Pre-crash 情			
				生器、擬真感測模擬器。	境。		
				本技術基於物件偵測網路模	基於一個網路深度學習	經濟部	自動駕駛感
				型架構,於無解碼流程之條	模型,於1.5TOPS 晶片	技術處	知次系統攻
				件下,結合電腦視覺後處	算力下,一個 FHD 影		堅計畫
	100	440	卷積神經網絡	理,完成物件偵測與語義分	像輸入,可同時達到四		
	120	110	模型技術	割的功能,達到高性價比的	輪車、兩輪車、行人、		
				目標。	紅綠燈、號誌、車道、		
					可行駛區域7種功能的		
					即時偵測辨識。		
				Prcoessor Platform	(1)該平台架構含4個	經濟部	低軌衛星通
				Architecture Design	ARM A53 核心以及 2	技術處	訊系統技術
					個 ARM R5F 核心,可		開發計畫
					bare metal 執行或者基		
					於 linux 作業系統;(2)		
	121	110	處理器平台架		可支援 ECC DRAM 且		
	121	110	構設計		提供 Programmable	技術處 知次系統攻堅計畫 經濟部 低軌衛星通 訊系統技術	
					Logic 供使用者開發;		
					(3)並具備多介面,例如		
					USB · Ethernet ·		
					CAN、UART、I2C以		
					及 GPIO。		
				AI 編譯器與自動排程優化技	Auto-Tuning 自動化編	經濟部	工研院創新
			立从处力用所	術,可以不同之 AI SoC 晶	譯排程優化演算法及架	技術處	前瞻技術研
		高性能之異質	片記憶體架構、異質晶片 IP	構,整合排程評估、排		究計畫	
	122	110	多核心人工智 慧加速器自動	整合、深度學習運算之支	程搜索、排程候選篩		知堅 自知堅 低訊開 工前祭
			意加速器目期 化優化技術	援、算力效能等差異,進行	選、執行測試數值回		
			10 度 10 1又 1内	客製化開發。	饋、取得優化排程等功		
					能,驗證計算性能。		

技術	項	產出	11 the 19 160	Lh dhe alt de	丁库田铁国	委辨	計畫		
類別	次	年度	技術名稱	技術特色 	可應用範圍	單位	名稱		
虚實融						隨著消費型態與智慧物聯網	各種材料(包含顯示器	經濟部	任意形態與
合與互				(AIoT)環境建置及普及率的	發光材料(OLED、	技術處	虚實融合顯		
動系統				提升,零售製造業者朝向少	QD、CF、QLED、		示系統開發		
				量多樣的生產模式來對應多	LED、TFE)、電極材		計畫		
				層面客戶的需求。高精密噴	料、光感元件材料				
				墨印刷技術(High accuracy	(OPD、OPV)等)的圖				
				InkJet Printer Technology)提	案化製程。				
				供此種新興量產模式的解決					
				方案,利用微機電(MEMS)					
				壓感控制的高精密噴墨模組					
				(Print Head Module)與微量噴					
				印體積(picoliter,皮升)的控制					
				方式,達到各種材料(包含顯					
				示器發光材料(OLED、					
				QD、CF、QLED、LED、					
		110	高精度噴墨印	TFE)、電極材料、光感元件					
	123		刷技術	材料(OPD、OPV)等)的圖					
			NET TX THE	案化製程,取代製作成本較					
				高,且需要對應不同形態、					
				尺寸、及多種圖形的光罩製					
				程(Mask-Needed Process),					
				如真空沉積鍍膜(CVD)、真					
				空濺鍍製程(Sputter Process)					
				與 OLED 蒸鍍製程等。此篇					
				技資係針對目前可供應高精					
					密噴墨印刷設備為出發點,				
				分析目前現有噴印材料的應					
				用面、研究面以及目前工研					
				院正開發中之可噴印式薄膜					
				封裝材料的製程運用,進行					
				噴印製程應用之技術與評估					
				報告,後續供噴墨印刷的建					
				置者評估與參考。					

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
				本技術整合多視野空間座標	零售智慧櫥窗或智慧展	經濟部	任意形態與
	124			精準融合,結合眼球追蹤、	售櫃、車載智慧車窗、	技術處	虚實融合顯
				肢體追蹤、觸控複合感知,	展館智慧展示窗、醫療		示系統開發
				進行指向互動配對、互動優	手術導航系統。		計畫
		110	抗干擾多人互	· - - - - - - - - - - - - - - - - - - -			
			動辨識技術	配對技術和雙相機重疊影像			
				重複目標去除演算法等核心			
				技術專利,達到多人抗干擾			
				互動之技術優勢。			
				開發適應性模型遷移學習之	智慧零售、 智慧育	經濟部	任意形態與
				辨識技術,自動化目標物分	樂、智慧展館、智慧移	技術處	虚實融合顯
				類、小量樣本執行圖像數據	動。		示系統開發
			適應性模型遷	擴增之方式,可縮短樣本模			計畫
	125	110	移學習辨識技	型整體作業時間及辨識精準			
			術	度的提升,且因應場域變化			
				與需求進行數據檢視,以利			
				各場域導入應用並兼具優異			
				的辨識成效。			
				本計畫開發之低繞射面板結	智慧零售、智慧育樂、	經濟部	任意形態與
				構設計,除可降低面板背景	智慧醫療、智慧移動。	技術處	虚實融合顯
			优格癿采吅	光源繞射現象,解決透明顯			示系統開發
	126	110	低繞射透明顯	示器之背景影像模糊狀況,			計畫
			示技術	除提升背景影像清晰度與視			
				覺可視性外,亦兼具高透明			
				及降低顯示器黃化之現象。			
				本計畫開發光感測元件與	智慧零售、智慧育樂、	經濟部	任意形態與
				TFT 陣列背板整合結構,並	智慧醫療、智慧移動。	技術處	虚實融合顯
	127	110	內嵌光感測顯	完成環境光感測補償演算法			示系統開發
	12/	110	示技術	架構。未來可應用於透明顯			計畫
				示場域,滿足人眼舒適或及			
				時安全資訊傳遞之需求。			
				本系統整合慣性感測器、感	車載智慧車窗、展館智	經濟部	任意形態與
				測相機模組與透明顯示器,	慧展示窗。	技術處	虚實融合顯
				於車窗上呈現恆定參考圖			示系統開發
	128	110	高人因舒適性	像,並藉由姿態反應預告行			計畫
	120	110	虚實融合技術	車狀態,以及根據載具動態			
				進行融合資訊位置補償,可			
				降低虛實融合操作下的動量			
				不適感。			

技術	項	產出				委辦	計畫
類別	次	年度	技術名稱	技術特色	可應用範圍	單位	名稱
				本低延時虛實融合系統藉由	零售智慧櫥窗或智慧展	經濟部	任意形態與
	129			使用者位置預偵測,預先框	售櫃、車載智慧車窗、	技術處	虚實融合顯
			大尺寸低延時	定使用者區域進行後續辨識	展館智慧展示窗。		示系統開發
		110	虚實融合顯示	處理,可降低大尺寸畫面的			計畫
			技術	AI 辨識預算負載,解決大尺			
				寸虛實融合應用的系統處理			
				延時問題。			
				浮空按鍵顯示模組系統是非	各類非接觸選單與按鍵	經濟部	任意形態與
				接觸應用中最具吸引力的技	應用,如電梯、ATM、	技術處	虚實融合顯
				術之一,因為它可以在不需	售票機、選單機。		示系統開發
				要任何可穿戴設備和儀器下			計畫
				提供水平和垂直視差,多人			
				可觀測視角並提供圖像立體			
	120	110	浮空按鍵顯示	深度之三維擬真視覺。此			
	130	110	模組系統	外,本技術具有低成本、小			
				尺寸、低功耗等表現。這些			
				特性將更容易提高運營商和			
				大眾的接受度,可有效的作			
				為防疫各項應用整合,取代			
				傳統按鍵,用以降低病毒傳			
				播速度。			
				因應智慧生活發展趨勢,開	曲面電子應用領域包括	經濟部	任意形態與
				發多維度控溫貼合結構設計	消費電子、醫療保健、	技術處	虚實融合顯
				與製程整合技術,驗證軟性	運動健身、車用電子、		示系統開發
	121	110	多維度控溫貼	面板貼合於 Rx 和 Ry 為	航太和工業自動化等;	技術處 部處 形融統 形融統 形融統 形融统 形融统 形融统 形融统 普廣 意實系畫 意實系畫 色實系畫 意實系書 卷實系畫	計畫
	131	110	合技術	1,800mm 和 1,800mm 光學級	應用產品包括感測器、		
				塑膠載具,未來可應用於智	智慧織物、顯示器、電		
				慧車艙之儀表板與中控面板	路板、電池、RFID		
				等場域。	等。		
				因應未來智慧場域裝置的多	面板級封裝,IC 載板,	經濟部	任意形態與
				樣性及高階封裝應用需求,	探針卡。	技術處	虚實融合顯
				工研院開發無光罩高景深且			示系統開發
				高解析數位圖案化技術整合			計畫
	132	110	高斷差結構補	解決方案,驗證應用於重佈			
	132	110	償與分析技術	線層(Re-distribution Layer,			
				RDL)表面 16µm 段差之補償			
				技術,成為未來可應用於先			
				進 IC 載板與高階面板級先			
				進封裝需求。			

技術類別	項次	產出年度	技術名稱	技術特色	可應用範圍	委辨 單位	計畫名稱
				因應 5G 通訊系統的發展趨	面板級封裝,IC 載板,	經濟部	任意形態與
	122			勢,工研院利用超高景深圖	探針卡。	技術處	虚實融合顯
				案化製程技術與高填孔濺鍍			示系統開發
				技術,設計 5G 帶通訊濾波			計畫
			整合薄膜被動	器(3.5GHz & 26GHz)整合於			
		110	元件之 RDL 載	扇出型面板級封裝重佈線層			
	133	110	板結構設計技	(Re-distribution Layer,			
			術	RDL),降低射頻無線通訊訊			
				號傳輸衰減率,實現電路面			
				積輕薄短小應用需求,提供			
				5G 通訊系統微縮化的最佳			
				解決方案。			
DLT 無				噴墨印刷技術(InkJet Printer	有機光電元件與材料	經濟部	無光罩噴印
光罩技				Technology)提供各種材料(包	(OLED \ QD \ CF \	技術處	材料與製程
術				含顯示器發光材料(OLED、	QLED、LED、TFE)、		驗證技術計
				QD、CF、QLED、LED、	電極材料、光感元件材		畫
				TFE)、電極材料、光感元件	料(OPD、OPV)等)噴		
				材料(OPD、OPV)等)的噴	印製程。		
				印製程,取代製作成本較			
				高,且需要對應不同形態、			
				尺寸、及多種圖形的光罩製			
				程(Mask-Needed Process),			
			IJP 顯示材料技	 如真空沉積鍍膜(CVD)、真			
	134	110	術製程驗證	空濺鍍製程(Sputter Process)			
				 與 OLED 蒸鍍製程等。此篇			
				技資係針對目前可供應噴墨			
				印刷設備為出發點,分析目			
				前現有噴印材料的應用面、			
				研究面以及目前工研院正開			
				發中之可噴印式薄膜封裝材			
				料的製程運用,進行噴印製			
				程應用之技術與評估報告,			
				後續供噴墨印刷的建置者評			
				估與參考。			

技術 類別	項次	產出 年度	技術名稱	技術特色	可應用範圍	委辦 單位	計畫名稱
				因應智慧生活場域少量多樣	創新利基市場開發少量	經濟部	無光罩噴印
				客製化產品彈性製造需求,	多樣化客製化產品,如	技術處	材料與製程
				工研院開發無光罩數位圖案	智慧移動、醫療、零售		驗證技術計
	125	110	DLT 數位曝光	化製程整合技術解決方案,	及育樂之多元應用新興		畫
	135	110	材料製程驗證	能大幅降低傳統光罩高昂成	場域。		
				本與製造往來時間,並替未			
				來新興產品開發打樣、試產			
				開拓新途徑。			
面板級				面板級扇出型封裝 FOPLP	穿戴式顯示裝置、 智	經濟部	面板級製程
製程技				之薄膜機械特性量測技術,	慧行動裝置、IOT 裝	技術處	技術新應用
術新應			扇出型封裝	乃建立 FOPLP 取下與結構	置、高效能伺服器等之		開發計畫
用	136	106	FOPLP 力學模	熱應力模擬技術,以分析	晶片應用。		
			擬技術	FOPLP 取下與可靠度測試的			
				失效風險,提高 FOPLP 良			
				率與性能,降低開發成本。			
				運用面板級之取下與貼合設	穿戴式顯示裝置、 智	經濟部	面板級製程
			面板級扇出型	備,搭配 SMC 模封材料,	慧行動裝置、IOT 裝	技術處	技術新應用
	137	107	封裝晶片取置	完成低翹曲 RDL-first	置、高效能伺服器等之		開發計畫
		10/	接合、膜封與	FOPLP 結構與取下技術開	晶片應用。		
			離型取下技術	發,以提高 FOPLP 後段製			
				程良率,降低開發成本。			