110 年度工研院影像處理、半導體光源、電子構裝及軟性混合電子技術等

相關研發成果非專屬授權案

- 一、主辦單位:財團法人工業技術研究院(以下簡稱「工研院」)。
- 二、非專屬授權標的:影像處理、半導體光源、電子構裝及軟性混合電子技術等相關研發成果 39 案 107 件:(一)取像與影像處理 7 案 19 件、(二)半導體光源 6 案 18 件、(三)半導體電子構裝 4 案 11 件、(四)神經網路 3 案 9 件、(五)軟性混合電子 3 案 5 件、(六)記憶體 2 案 4 件、(七)薄膜電晶體液晶顯示 3 案 8 件、(八)反射式顯示器 5 案 17 件、(九)先進製程與設備 3 案 11 件、(十)高速通訊 2 案 2 件、(十一)透明顯示系統 1 案 3 件;暨相關技術 23 件:(一)取像與影像處理技術 1 件、(二) 半導體光源技術 1 件、(三) 半導體電子構裝技術 10 件、(四) 神經網路技術 1 件、(五) 軟性混合電子技術 3 件、(六) 記憶體技術 3 件、(七) 任意形態顯示與感測製造技術 2 件、(八) 功率元件技術 1 件、(九) 智慧製造與智能辨識技術 1 件,詳如附件。
- 三、非專屬授權廠商資格:國內依中華民國法令組織登記成立且從事研發、設計、製造 或銷售之公司法人。

四、公開說明會:

- (一)舉辦時間:民國(下同)110年11月11日下午3時至4時。
- (二)舉辦地點:採線上方式辦理。
- (三)報名須知:採電子郵件方式報名。有意報名此場者,請於110年11月9日中午12時整(含)前以電子郵件向本案聯絡人報名(主旨請註明「影像處理、半導體光源、電子構裝及軟性混合電子技術等相關研發成果非專屬授權案:公開說明會報名」,並於內文中陳明:公司名稱、公司電話、參與人數、姓名、職稱、參與人手機號碼)。工研院「技轉法律中心」聯絡人將於110年11月10日下午5時整(含)前發送電子郵件回覆並告知公開說明會會議資訊。

五、聯絡人:工研院技術移轉與法律中心 林小姐

電話:+886-3-591-6636

傳真: +886-3-582-0466

電子信箱: iris.lin@itri.org.tw

地址:310401 新竹縣竹東鎮中興路四段 195 號 51 館 110 室

附件:

一、研發成果授權標的 (39 案 107 件)

技術分類	案 次	件次	件編號	專利中文名稱	狀態		種類	申請號	專利證號	専利起期		獨有/	委辦 單位
取像與影像				噴液裝置及其多孔道卡匣	獲	台	發			2006	2024		
處理技術	1	1	P08920060TW	漏液測量方法及裝置	證	灣	明	93105678	1251548	0321	0303	共有	工研院
取像與影像				噴液裝置及其多孔道卡匣	獲	美	發			2007	2024	., ,	
處理技術	1	2	P08920060US	漏液測量方法及裝置	證	國	明	10/730,179	7,182,423	0227	0712	共有	工研院
取像與影像	2	2	D00020071TW	侧 具 泣 脚 去 齿 子 斗 兀 벞 里	獲	台	發	02105062	1227500	2005	2024	ц <i>+</i>	工研院
處理技術	2	3	P08920061TW	微量液體充填方法及裝置	證	灣	明	93105062	1237580	0811	0226	共有	上研院
取像與影像	2	4	P08920061CN	似 具泫蛐太适 大 ,	獲	中	發	2004100088	ZL2004100	2007	2024	共有	工研院
處理技術	2	4	P08920061CN	微量液體充填方法及裝置	證	國	明	45.1	08845.1	1003	0323	共月	工研院
取像與影像	2	5	P08920061US	似 具泫蛐太适 大 ,	獲	美	發	10/735,469	6,991,311	2006	2024	共有	工研院
處理技術	2	3	P08920061US	微量液體充填方法及裝置	證	國	明	10//33,469		0131	0712	共月	工研院
取像與影像	3	6	P08920093TW	噴液裝置、及其噴液頭結	獲	台	發	93105677	1269714	2007	2024	共有	工研院
處理技術	3	0	P089200931 W	構之製造方法	證	灣	明	931030//	1209/14	0101	0303	共月	工研院
取像與影像	3	7	D00020002CN	· · · · · · · · · · · · · · · · · · ·	獲	中	發	2004100296	ZL2004100	2009	2024	共有	工研院
處理技術	3	/	P08920093CN	噴液裝置及其制造方法	證	國	明	94.8	29694.8	0812	0329	共月	工研院
取像與影像	3	8	D0002000211G	噴液裝置、及其噴液頭結	獲	美	發	10/747 401	7 162 274	2007	2024	共有	- m (b)
處理技術	3	ð	P08920093US	構之製造方法	證	國	明	10/747,491	7,163,274	0116	0825	共月	工研院
阳傍梅梨净				同時追蹤可移動物體與可	審	ل	茲						經濟部
取像與影像 處理技術	4	9	P51090017TW	移動相機的六自由度方位	查	台灣	發明	110114401				獨有	
处理投侧				之方法與系統	中	冯	4/7						技術處
取像與影像				同時追蹤可移動物體與可	審	ф	茲	2021105545					經濟部
處理技術	4	10	P51090017CN	移動相機的六自由度方位	查			64.X				獨有	超衡即
处吐仅侧				的方法與系統	中	函	-77	04.A					投侧 处
取像與影像				同時追蹤可移動物體與可	審	羊	發						經濟部
成 要 技術	4	11	P51090017US	移動相機的六自由度方位	查		贺明	17/369,669				獨有	超循即技術處
处吐仅侧				之方法與系統	中	凶	-77						投帆 处
取像與影像				三維影像動態矯正評估與	審	台	發						經濟部
處理技術	5	12	P51090032TW	繑具輔助設計方法及其系	查	白灣		109142659				獨有	技術處
处垤仅侧				統	中	/与	-77						1文师 处
取像與影像				三維影像動態矯正評估與	審	ф	茲	2020114899					經濟部
處理技術	5	13	P51090032CN	矯具輔助設計方法及其系	查			44.1				獨有	技術處
处 互				統	中	গ্ৰ	-77	44.1					投帆 处
取像與影像				三維影像動態矯正評估與	審	羊	發						經濟部
成 要 表 像 要 表 像 要 表 像 要 表 像 要 表 像 要 表 像 要 表 像 要 表 像 更 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是	5	14	P51090032US	绮具輔助設計方法及其系	查		贺明	17/308,413				獨有	超衡即
处红红柳				統	中		.77						汉 門 灰
取像與影像	6	15	P51090043TW	深度測量設備及方法	審	台	發	110122337				獨有	經濟部
處理技術	U	13	1010000101 W	(查	灣	明	110122331				121/7	技術處

11. the in the	案	件	사 사 교육	* 11	狀	國	種	-h 14 11 L	# 4.1200 P.E.	專利	專利	獨有/	委辨
技術分類	次	次	件編號	專利中文名稱	態	家	類	申請號	專利證號	起期	迄期	共有	單位
					中								
取像與影像處理技術	6	16	P51090043US	深度測量設備及方法	審查中	美 國	發明	17/319,107				獨有	經濟部 技術處
取像與影像 處理技術	7	17	P51970162TW	提供深度資訊之影像處理 方法及其影像處理系統	獲證	台灣	發 明	98109603	I457853	2014 1021	2029 0323	獨有	經濟部 技術處
取像與影像 處理技術	7	18	P51970162CN	提供深度信息的影像處理 方法及其影像處理系統	獲證	中國		2009101368 19.X	ZL2009101 36819.X	2012 0125		獨有	經濟部 技術處
取像與影像 處理技術	7	19	P51970162US	提供深度資訊之影像處理 方法及其影像處理系統	獲證	美國	發明	12/632,954	8,565,513	2013 1022		獨有	經濟部 技術處
半導體 光源	8	20	P51040029TW	生物辨識裝置及方法與穿 戴式載體	獲證	台灣	發 明	105120683	I623766	2018 0511	2036 0629	獨有	經濟部 技術處
半導體光源	8	21	P51040029CN	生物辨識裝置及方法與穿戴式載體	獲證	中國		2016105925 48.9	ZL2016105 92548.9		2036 0725	獨有	經濟部 技術處
半導體光源	8	22	P51040029CND1	生物辨識裝置與穿戴式載體	審查中	中國		2020101059 87.9				獨有	經濟部技術處
半導體光源	8	23	P51040029USD1	生物辨識裝置及方法與穿戴式載體	審查中	美 國	發 明	17/317,899				獨有	經濟部 技術處
半導體 光源	8	24	P51040029USC1	生物辨識裝置與穿戴式載體	獲證	美國	發 明	15/730,687	10,679,081	2020 0609		獨有	經濟部 技術處
半導體 光源	8	25	P51040029USC2	生物辨識裝置及方法與穿 戴式載體	獲證	美 國		16/596,770	11,037,007	2021 0615		獨有	經濟部 技術處
半導體 光源	9	26	P51090036TW	頭戴式眼動追蹤系統	審查中	台灣	發明	109146422				獨有	經濟部 技術處
半導體 光源	9	27	P51090036CN	頭戴式眼動追蹤系統	審查中	中國		2020115806 25.1				獨有	經濟部技術處
半導體光源	9	28	P51090036US	頭戴式眼動追蹤系統	審查中	美國	發明	17/229,846				獨有	經濟部 技術處
半導體 光源	10	29	P51080015TWC1	發光元件及顯示裝置	暫准	台灣	發 明	109128365				獨有	經濟部 技術處
半導體光源	10	30	P51080015CNC1	發光元件及顯示裝置	審查中	中國		2020108487 63.7				獨有	經濟部 技術處
半導體	10	31	P51080015USC1	發光元件及顯示裝置	審	美	發	17/113,114				獨有	經濟部

II. also A street	案	件	म कर वि	# 41 1	狀	國	種	ala sab mit	# d.l wo nk	專利	專利	獨有/	委辦
技術分類	次	次	件編號	專利中文名稱	態	家	類	申請號	專利證號	起期	迄期	共有	單位
光源					查	國	明						技術處
					中								
半導體					審	羊	發						經濟部
光源	10	32	P51080015US	發光元件及顯示裝置	查	 國	明明	16/726,271				獨有	技術處
707//					中		71						12 M Re
半導體					審	台	發						經濟部
光源	11	33	P51090037TW	顯示裝置	查	灣	明明	109147080				獨有	技術處
					中	. ,							
半導體					審	台	發						經濟部
光源	12	34	P51090038TW	微型元件結構及顯示裝置	查	灣	明	110116846				獨有	技術處
					中								
半導體					審	中	發	2021108506					經濟部
光源	12	35	P51090038CN	微型組件結構及顯示設備	查.	國	明	93.3				獨有	技術處
小关叫					中					•••	• • • •		
半導體	13	36	P51990091TW	氮化物半導體模板及其製	獲	台	發	99143087	I456753	2014		獨有	經濟部
光源				造方法	證	灣	明			1011			技術處
半導體	13	37	P51990091US	氮化物半導體模板及其製	獲	美田	發	12/963,650	8,482,103	2013		獨有	經濟部
光源				造方法	證	國人	明			0709	1201		技術處
半導體電	14	38	P51080068TW	多晶片封裝件及其製造方	暫	台繼	發明	109114287				獨有	經濟部
子構裝				法	准宏	灣	471						技術處
半導體電	11	39	P51080068CN	多芯片封裝件及其製造方	審查	中	發	2021104179				獨有	經濟部
子構裝	14	39	F31000000CN	法	旦中	國	明	10.X				烟角	技術處
					審								
半導體電	14	40	P51080068US	多晶片封裝件及其製造方	查	美	發	17/005,310				獨有	經濟部
子構裝	17	70	13100000000	法	中	國	明	177003,310				121 /1	技術處
半導體電					獲	台	發			2005	2024		經濟部
子構裝	15	41	P03930009TW	立體堆疊式構裝結構	證	灣	明明	93123227	I234246	0611		獨有	技術處
半導體電					獲	中		2004100743	ZL2004100				經濟部
子構裝	15	42	P03930009CN	一種立體堆棧式封裝結構	證	國	明	57.0	74357.0	0402	0909	獨有	技術處
半導體電				and a property of	獲	美	發			2006	2025	Jam. *	經濟部
子構裝	15	43	P03930009US	立體堆疊式構裝結構	證	國	明	11/074,732	7,119,429	1010	0602	獨有	技術處
小诺叫工				基底穿孔結構及其製造方	審	,	,ate						,_ ·= ·
半導體電	16	44	P51090045TW	法、重佈線層結構及其製	查	台 ※	發	110109308				獨有	經濟部
子構裝				造方法	中	灣	明						技術處
少 街 脚 西				基底穿孔結構及其製造方	審	Н	ZÝ.	2021104400					伽滋如
半導體電	16	45	P51090045CN	法、重佈線層結構及其製	查	中岡		2021104409 64.8				獨有	經濟部技術處
子構裝				造方法	中	國	奶	U4.8 					仅何 処
半導體電	16	46	P51090045US	基底穿孔結構及其製造方	審	美	發	17/321,536				獨有	經濟部

技術分類	案次	件次	件編號	專利中文名稱	狀態	國家	種類	申請號	專利證號	専利起期		獨有/	委辦 單位
子構裝				法、重佈線層結構及其製	查	國						- 1 74	技術處
				造方法	中								
半導體電	15	47	D510 (0020TW)	山、上南加二 <u>ル</u>	獲	台	發	0.61.40020	1270465	2012	2027	畑十	經濟部
子構裝	17	47	P51960020TW	嵌入式電阻元件	證	灣	明	96140828	I370465	0811	1029	獨有	技術處
半導體電	17	48	P51960020US	嵌入式電阻元件	獲	美	發	11/852,244	7,948,355	2011	2029	獨有	經濟部
子構裝	17	70	13170002005	版/ C八 包 1 立/ C 1	證	國	明	11/032,244	7,740,333	0524	0417	刊为	技術處
				低精度神經網路的資料特	審	台	發						經濟部
神經網路	18	49	P51090031TW	徵擴增系統及方法	查	灣	明	110111849				獨有	技術處
					中								
11. 1- 1-1-	10			低精度神經網絡的數據特	審土	中	發	2021104530				vm L	經濟部
神經網路	18	50	P51090031CN	徵擴增系統及方法	查山	國	明	26.1				獨有	技術處
					中安								
神經網路	10	<i>E</i> 1	P51090031US	低精度神經網路的資料特	審查	美	發	17/385,316				獨有	經濟部
仲經網哈	10	31	P3109003103	徵擴增系統及方法	中	國	明	17/383,310				独月	技術處
				用於記憶體內運算的記憶	審								
神經網路	19	52	P51090040TW	體裝置及資料權重狀態判	查	台	發	110101199				獨有	經濟部
				斷方法	中	灣	明	110101177				V-V /4	技術處
				用於存儲器內運算的存儲	審								
神經網路	19	53	P51090040CN	器裝置及數據權重狀態判	查	中		2021102345				獨有	經濟部
				斷方法	中	國	明	06.9					技術處
				用於記憶體內運算的記憶	審	¥	3 %						你该和
神經網路	19	54	P51090040US	體裝置及資料權重狀態判	查	弄 國	發	17/322,509				獨有	經濟部 技術處
				斷方法	中	凶	4/7						权侧 処
					審	台	淼						經濟部
神經網路	20	55	P51090046TW	及系統晶片封裝結構	查	灣		110114328				獨有	技術處
					中	. •							
					審	中	發	2021105179					經濟部
神經網路	20	56	P51090046CN	及系統晶片封裝結構	查,	國	明	23.4				獨有	技術處
					中中								
油炉烟 烟	20	-7	D51000046110	陣列開關電路、開關元件	審本	美	發	17/272 122				烟七	經濟部
神經網路	20	57	P51090046US	及系統晶片封裝結構	查中	國	明	17/372,132				獨有	技術處
				偵測裝置、訊號處理裝	審								
軟性混合	21	58	P51090052TW	置、其模組及其穿戴式產	金	台	發	110112344				獨有	經濟部
電子	4 1	30	1010000021 W	且一六侯紅及六牙與八座	旦中	灣	明	110112377				121.77	技術處
軟性混合				含軟性揚聲器之軟性電子	獲	台	發			2006	2024		經濟部
電子	22	59	P03930081TW	装置	證		明明	93133733	1266552	1111		獨有	技術處
軟性混合				含軟性揚聲器之軟性電子	獲					2011			經濟部
電子	22	60	P03930081US	装置	證		明	11/086,331	7,957,550	0607	0500	獨有	技術處

技術分類	案次	件次	件編號	專利中文名稱	狀態		種類	申請號	專利證號	専利起期	•	獨有/	委辦 單位
軟性混合	,			<u></u> 軟性電子針灸裝置及其製	獲	台	發			2006		7,7	經濟部
電子	23	61	P03930102TW	造方法		灣	明明	93132856	1257863	0711		獨有	技術處
軟性混合					獲	中		2004100887	ZI 200/100		2024		經濟部
電子	23	62	P03930102CN	其制造方法	投證	國		48.8		0701		獨有	技術處
更 1				共构边为仏	審		.91	70.0	00740.0	0701	1101		秋柳
記憶體	24	63	P51090047TW	鐵電記憶體元件,包含電	垂查	台	發	110116532				獨有	經濟部
技術	24	03	1310300471W	流阻障層。	旦中	灣	明	110110332				细石	技術處
					審								
記憶體	24	64	P51090047US	鐵電記憶體	垂查	美	發	17/368,686				獨有	經濟部
技術	24	04	13109004703	翼电记息阻	旦中	國	明	17/300,000				烟炉	技術處
記憶體					獲	台	發			2013	2027		經濟部
記憶題 技術	25	65	P51960053TW	磁性隨機存取記憶體	投證	口灣	短明	96129378	I415124	1111		獨有	技術處
					強獲	伊		2007101497	71 2007101				经濟部
記憶體技術	25	66	P51960053CN	磁性隨機存取存儲器				63.2	49763.2	1026		獨有	
7又1四					證	國台	· · · · · · · · · · · · · · · · · · ·	03.2	49/03.2				技術處
TFT LCD	26	67	P61950037TW	多色域控制顯示器	獲松		發明	95144429	1346920	2011		獨有	經濟部
					證	灣土		2006101701		0811			技術處
TFT LCD	26	68	P61950037CN	多色域控制顯示器	獲	中四		2006101701				獨有	經濟部
					證	國		35.8	70135.8	0714			技術處
TFT LCD	26	69	P61950037US	多色域控制顯示器	獲	美		11/681,185	7,576,719	2009		獨有	經濟部
				and the law religions of the second	證	國	明			0818			技術處
TFT LCD	27	70	P51960015TW	混合多工式立體顯示器及	獲	台	發	96122813	1347453	2011		獨有	經濟部
				其顯示方法	證		明			0821			技術處
TFT LCD	27	71	P51960015US	混合多工式立體顯示器及	獲			11/958,422	8,724,039	2014		獨有	經濟部
				其顯示方法	證	國				0513			技術處
TFT LCD	28	72	P51970074TW	熱寫系統	獲	台	發	97138183	I416591	2013		獨有	經濟部
					證	灣	明			1121		-	技術處
TFT LCD	28	73	P51970074CN	熱寫系統	獲	中		2008101683				獨有	經濟部
					證	國		53.7	68353.7	0208			技術處
TFT LCD	28	74	P51970074US	熱寫系統	獲	美		12/506,873	8,094,174	2012		獨有	經濟部
					證	國	明	,		0110			技術處
反射式顯	29	75	P03930053TW	彩色膽固醇型液晶顯示器	獲	台	發	93137856	I317828	2009		獨有	經濟部
示器				及其製作方法	證	灣	明			1201	1206	. • /•	技術處
反射式顯	29	76	P03930053TWA1	彩色膽固醇型液晶顯示器	獲	台	發	94103642	I352227	2011	2025	獨有	經濟部
示器				及其製造方法	證	灣	明		, , , , , ,	1111	0203	- 4 /4	技術處
反射式顯	29	77	P03930053TWA2	彩色膽固醇型液晶顯示器	獲	台	發	94103639	I320858	2010	2025	獨有	經濟部
示器		.,		及其製造方法	證	灣	明	, 1103037	102000	0221	0203	1-17	技術處
反射式顯	29	78	P03930053CN	彩色膽固醇型液晶顯示器	獲	中	發	2005100005	ZL2005100	2008	2025	獨有	經濟部
示器	ر ـــ	70		及其制造方法	證	國	明	90.9	00590.9	1203	0106	1-11-77	技術處
反射式顯	29	79	P03930053CNA1	彩色膽固醇型液晶顯示器	獲	中	發	2005100545	ZL2005100	2008	2025	獨有	經濟部

II sha A alon	案	件	dw at Id	dt et l hee	狀	國	種	-L v4 mh	et e tue uh	專利	專利	獨有/	委辦
技術分類	次	次	件編號	專利中文名稱	態	家	類	申請號	專利證號	起期	迄期	共有	單位
示器				及其製造方法	證	國	明	86.0	54586.0	0709	0313		技術處
反射式顯	29	80	P03930053CNA2	彩色膽固醇型液晶顯示器	獲	中	發	2005100545	ZL2005100	2008	2025	獨有	經濟部
示器	29	δU	P03930053CNA2	及其制造方法	證	威	明	87.5	54587.5	0924	0313	独月	技術處
反射式顯	29	81	P03930053USC1	彩色膽固醇型液晶顯示器	獲	美	發	12/691,746	8,233,130	2012	2025	獨有	經濟部
示器	29	01	P03930033USC1	及其製造方法	證	國	明	12/091,740	8,233,130	0731	1220	独月	技術處
反射式顯	20	82	P51950161TW	被動式矩陣彩色雙穩態液	獲	台	發	95148360	I374417	2012	2026	獨有	經濟部
示器	30	02	F319301011 W	晶顯示系統及其驅動方法	證	灣	明	93146300	13/441/	1011	1221	独有	技術處
反射式顯	30	83	P51950161US	被動式矩陣彩色雙穩態液	獲	美	發	11/802,699	8,115,718	2012	2030	獨有	經濟部
示器	30	63	F3193010103	晶顯示系統及其驅動方法	證	國	明	11/802,099	0,113,/10	0214	0613	烟月	技術處
反射式顯	31	84	P61950069TW	彩色膽固醇液晶顯示器裝	獲	台	發	96113193	1368069	2012	2027	獨有	經濟部
示器	31	04	1 019300091 W	置以及其製造方法	證	灣	明	90113193	1308009	0711	0413	烟角	技術處
反射式顯	31	85	P61950069CND1	彩色膽甾型液晶顯示器裝	獲	中	發	2011101458	ZL2011101	2016	2027	獨有	經濟部
示器	31	03	101930009CND1	置以及其制造方法	證	國	明	29.7	45829.7	0406	0517	烟月	技術處
反射式顯	31	86	P61950069US	彩色膽固醇液晶顯示器裝	獲	美	發	11/950,270	7,864,285	2011	2028	獨有	經濟部
示器	31	80	F01930009C3	置以及其製造方法	證	國	明	11/930,270	7,804,283	0104	0402	烟月	技術處
反射式顯	31	87	P61950069USC1	彩色膽固醇液晶顯示器裝	獲	美	發	12/969,508	8,502,952	2013	2028	獨有	經濟部
示器	31	07	10193000903C1	置以及其製造方法	證	國	明	12/909,308	8,302,932	0806	1209	烟月	技術處
反射式顯	31	88	P61950069USD1	彩色膽固醇液晶顯示器裝	獲	美	發	12/955,867	8,102,499	2012	2027	獨有	經濟部
示器	31	00	F01930009U3D1	置以及其製造方法	證	國	明	12/933,607	8,102,499	0124	1203	烟月	技術處
反射式顯	32	89	P61960018TW	液晶顯示器的製造方法	獲	台	發	96130311	I368061	2012	2027	獨有	經濟部
示器	32	0,7	1 019000181 W	《加納》、福內表边方 《	證	灣	明	90130311	1300001	0711	0815	烟月	技術處
反射式顯	32	90	P61960018CN	液晶顯示器的制造方法	獲	中	發	2008101687	ZL2008101	2012	2028	獨有	經濟部
示器	32	70	101700018610	双曲频 小韶 时间 边 7 亿	證	國	明	17.1	68717.1	0328	0925	7917月	技術處
反射式顯	33	91	P61970043CN	多穩態顯示系統以及多穩	獲	中	發	2009101512	ZL2009101	2012	2029	獨有	經濟部
示器	33	<i>)</i> 1	1017/0043610	態顯示器的影像寫入方法	證	國	明	98.5	51298.5	0711	1008	751 77	技術處
先進顯示					獲	台	發			2009	2025		經濟部
製程與設	34	92	P08940096TW	金屬薄膜成形裝置		口灣	明	94147334	I314957	0921		共有	技術處
備技術					032	15	71			0721	1220		1211700
先進顯示					獲	中	淼	2005101376	ZL2005101	2009	2025		經濟部
製程與設	34	93	P08940096CN	金屬薄膜成形裝置	證			74.7	37674.7	0429		共有	技術處
備技術					032		/1	7 1. 7	37071.7	0127	1230		121175
先進顯示				多層印刷電路板及其製造	獲	台	發			2010	2026		
製程與設	35	94	P08940098TWC1	方法		卢灣	明	95147280	I328416	0801		共有	工研院
備技術					UJL	. 7	/1			0001	1217		
先進顯示				多層印刷電路板及其制造	獲	中	發	2006101680	ZL2006101	2009	2026		
製程與設	35	95	P08940098CNC1	方法	證			58.2	68058.2	1223		共有	工研院
備技術					UJL.		/1	0.2	55555.2	1223	1221		
先進顯示	35	96	P08940098US	多層印刷電路板及其製造	獲	美	發	11/554,882	7,834,274	2010	2029	共有	工研院
製程與設	55	70		方法	證	國	明	1.001,002	.,001,271	1116	0512	<i>// //</i>	, 1,73

技術分類	案次		件編號	專利中文名稱	狀態	國家	種類	申請號	專利證號	専利起期		獨有/ 共有	委辦 單位
備技術													
先進顯示 製程與設 備技術	35	97	P08940098JP	多層印刷電路板及其製造 方法	獲證		發 明	346159/2006	4195056	2008 1003		共有	工研院
先進顯示 製程與設 備技術	35	98	P08940098KR	多層印刷電路板及其製造 方法	獲證			10-2006-012 0848	10-088570 1		2026 1130	共有	工研院
先進顯示 製程與設 備技術	35	99	P08940098IT	多層印刷電路板及其製造 方法	獲證	義大利		TO2006A00 0925	IT0001376 531	2010 0622	2026 1227	共有	工研院
先進顯示 製程與設 備技術	36	100	P61960033TW	噴墨裝置以及校正方法	獲證	台灣	發明	96134824	I331089	2010 1001	2027 0918	獨有	經濟部 技術處
先進顯示 製程與設 備技術	36	101	P61960033CN	噴墨裝置以及校正方法	獲證			2007101535 82.7	ZL2007101 53582.7	2012 0118	2027 0916	獨有	經濟部 技術處
先進顯示 製程與設 備技術	36	102	P61960033US	噴墨裝置以及校正方法	獲證	美 國		12/056,234	7,891,752	2011 0222	2029 0410	獨有	經濟部 技術處
高速通訊	37	103	P51090035TW	透明天線及其製作方法	審查中		發 明	110116637				獨有	經濟部 技術處
高速通訊	38	104	P51090044TW	天線模組	審查中	台灣	發 明	110121082				獨有	經濟部 技術處
透明顯示系統	39	105	P51100001TW	產生浮空影像的裝置及方法	審查中	台灣	發 明	110114269				獨有	經濟部 技術處
透明顯示系統	39	106	P51100001CN	產生浮空圖像的裝置及方法	審查中			2021104303 50.1				獨有	經濟部 技術處
透明顯示系統	39	107	P51100001US	產生浮空影像的裝置及方法	審查中	美 國		17/235,940				獨有	經濟部 技術處

【備註】:本公告所包含之專利範圍除專利清單明載外,包含上開專利之延續案、分割案、EPC申請案指定國別後所包含之各國專利、PCT同一案所申請之各國專利。

二、技術授權標的 (23件)

技術類別	項次		技術名稱	技術特色	可應用範圍	科專計畫 名稱	檢核用 序號
類 列	文	干度		本系統以智慧眼鏡平台所開發之辨		石 桶	净 统
				識與空間定位軟硬體規格及各單元			
阳伯均			跨域 3D 視覺裝	功能規格,平台可應用於遠程影音		跨域 3D 視	
取像與 影像處	1	110	機指導系統整	協作服務系統,結合擴增實境眼鏡	工廠管理、遠距裝機、遠距操	野城 SD 杭 覺指導系統	
***************************************	1	110	機相等系統登 合技術	以及遠距維修引導服務功能,讓現	作教學、遠距維修。	見相等系統 整合計畫	
理技術			1台 投侧	場工作人員與後台管理人員可以即		全台 可重	
				時雙向溝通,有效率地排除設備組			
				裝或維修時遭遇之問題 。			
				使用柔性基板進行自由尺度顯示模			
上 道 岫			力力口兹矛趾	組之無縫拼接,軟性拼接精度<5	miono LED 使祖,既二月,春	工研院創新	
半導體	2	110	自由尺度柔性	μm,軟性基板雷射切割熱影響區	micro-LED 電視、顯示屏、車	前瞻技術研	
光源			拼接技術	<20 μm,可達成 < 400 μm pixel	用、電競螢幕等應用產品。	究計畫	
				pitch 的無縫拼接顯示			
化 道 畊 帝			北掛挫加亚劫	針對封裝常見散熱議題及處理方	业满雕 西フ L 应业满雕	可程式 3D	
半導體電	3	110	封裝模組之熱	式,透過模擬分析於初期探討並解	半導體、電子、功率半導體、	異質集成技	
子構裝			阻模擬分析	決根本問題。	封裝。	術計畫	
少 道 鼬 雷			高速電鍍銅凸		1. 3DIC	可程式 3D	
半導體電 子構裝	4	110	塊與重分佈層	1. 高速銅電鍍技術。	2. Fan-out	異質集成技	
丁伸农			技術		3. Bumping process	術計畫	
半導體電			TCV 晒制 抗仁	1. High density TSV array •	1. 3DIC	可程式 3D	
干牙胆电子構裝	5	110	製程技術	2. TSV open density > 3% •	2. Si interposer	異質集成技	
7 件衣			衣柱权帆	2. 15 v open density > 570	2. Si interposei	術計畫	
半導體電			有機中介層無	1. Maskless °	Organic interposer	可程式 3D	
一寸胆电 子構裝	6	110	光罩 10 μm 導	2. 有機中介層乾膜壓合。	2. PCB 產業	異質集成技	
7 件表			通孔成型技術	2. 有城十川眉钇族座古。	2.100 准未	術計畫	
				實現在基板上壓合厚膜類型的介電			
半導體電			有機中介層無	層或增材層,可搭配使用雷射鑽孔	厚膜類型的介電層或增材層的	可程式 3D	
子構裝	7	110	光罩 10 μm 導	技術在無光罩時一樣能製作出孔徑	等通孔製作。	異質集成技	
7 件表			通孔成型開發	在 10 μm 以上的導通孔,符合新世	守远70衣件	術計畫	
				代的產品微小化發展趨勢之需求。			
				Chiplet 的彈性架構,異質整合			
				(Heterogeneous Integration)不同製程			
			Chip First	或不同材料的裸晶(Die),先將晶片		可程式 3D	
半導體電	o	110	Cilip First Fan-Out 製程	鑲埋在基板內部。接者進行封膠	Chiplet 異質整合,扇出型	其質集成技	
子構裝	8	110	irani-Out 表程 i評估	(Molding)。後續將封膠基板與載	(Fan-out)封裝技術。	共 貝 未 成 投 術 計 畫	
			미기다	具作分離。由於封膠基板的面積比		沙川可	
				晶片大,可以散出(Fan-Out)方式			
				製作於塑膠模上,如此便可容納更			

技術	項	產出				科專計畫	檢核用
類別		年度	技術名稱	技術特色	可應用範圍	名稱	序號
				多的 I/O 接點數目。可以在效能與成			
				本上取得更佳解決方案,帶動新一			
				波的晶片整合技術發展。			
1. 14 -11 -			AZ-10XT 取代	評估用 AZ-9260 的製程參數用於		可程式 3D	
半導體電	9	110	AZ-9260 之黄	AZ-10XT,測試是否能取代	光阻特性評估及應用測試。	異質集成技	
子構裝			光製程開發及	AZ-9260 ·		術計畫	
			乾蝕刻評估	J. P. Indiana S. La M. (T. J. S. T. J. J. J. S. T. J. S. T. J. S. T. J. S. T. J.			
				向量網路分析儀(Vector Network			
				analyzer)為一種在RF量測上應用的			
				儀器,主要用以量測線性微波網路 (4世間,在景網路及K/第五供工以			
				的特性。向量網路分析儀不僅可以 是測於點份上(Magnituda)。目時			
				量測信號的大小(Magnitude),同時		可包子 2D	
半導體電	10	110	向量網路分析	可以量測信號的相位(Phase),所以 它不僅可以量測具有大小的物理	SiP 封裝量測	可程式 3D 異質集成技	
子構裝	10	110	儀量測理論	量,還可以量測如:輸入阻抗 Zin、	311 到表里例	新	
				量, 送引以量例如·		加可重	
				及相位的物理量,本份量測理論報			
				告將說明向量網路分析儀的理論基			
				礎,與如何正確與適當地善用 RF 量			
				測儀器。			
				向量網路分析儀 (Vector Network			
				Aanlyzer) 是一個重要的 RF 測試儀			
				器,可以協助開發與廣泛的使用於			
				射頻和高頻應用。同時向量網路分			
				析儀具有獨特的校準技術。雖然如			
				同一般的量測測試設備需先經過原			
le Véral Te			垂直式雙面向	廠校準,並且進行年度檢查以確保		可程式 3D	
半導體電	11	110	量網路分析量	其可正常運作,但 VNA 的不同之處	SiP 封裝量測	異質集成技	
子構裝			測之校正方法	在於具有額外的「使用者校準」,		術計畫	
				可以在進行量測之前由使用者執			
				行,以確保可以精準被校正到量測			
				的基準面。本報告不僅說明一般的			
				網路分析儀校正方法,同時更針對			
				雙面量測機制下的校正方法進行說			
				明。			
				在面對少量多變的半導體世代,傳	高腳數邏輯 IC (High pin		
半導體電			厚膜光阻去光	統形式高度較矮的銅錫凸塊接點已	logic)、記憶體及行動裝置	可程式 3D	
干等短电子構裝	12	110	阻製程評估報	不敷使用,因此對於較大高度之銅	(Memory & Mobile) \ LED	異質集成技	
1 件衣			告	柱(copper pillar)需求日益增加,為製	次封裝 (submount) 、車用電	術計畫	
				作此高度之銅柱,相對應之厚型乾	子元件 (Automotive)、生物醫		

技術	項	產出	II sha ta sa	II de de la	or or or or or	科專計畫	檢核用
類別	次	年度	技術名稱	技術特色	可應用範圍	名稱	序號
				膜式光阻相關製程日益重要。本案	療裝置 (Medical devices) 。		
				購置之乾膜式光阻去除清潔與有機			
				顯影複合機是將已完成銅柱製程後			
				之乾膜式光阻完全去除,並將晶片			
				表面加以清潔乾淨,完成大高度銅			
				柱之製程需求,並利於接續之後相			
				關製作流程。			
				陣列開關設計可以根據不同的晶片			
				需求及使用情境時透過程式控制陣		可程式 3D	
神經網路	13	110	陣列開關電路	列開關的切換來達到不同的腳位連	IC 設計、先進構裝整合。	異質集成技	
				接,並具有高速訊號傳輸的優化設		術計畫	
				計。			
軟性混合電子	14	110	高感度耦合感 測模組設計技	因應長期舒適監控生理訊號需求, 需開發低織物壓力生理感測模組, 本技術提供低壓迫耦合式生理感測	軟性混合電子應用領域包括消 費電子、醫療保健、運動健身、 車用電子、航太和工業自動化 等;應用產品包括感測器、智	軟性混合電 子加值技術 與系統應用	
电门			術	量測手法與感測模組設計,兼顧穿	慧織物、顯示器、電路板、電	開發技術計	
				戴舒適性與耦合生理訊號量提升。	志臧初、顯小命、电略板、电 池、RFID 等。	畫	
軟性混合 電子	15	110	軟性混合電子 設計平台建構 技術	因應軟性混合電子系統整合設計需求,建立結構或應力轉換電性訊號的多重物理模型整合技術,其中核心技術包含應力與電性整合模型與可拉伸線路模型,並以此核心技術等校模型發展成設計工具,協助使用者快速開發其軟性混合電子系統。	工業自動化等;應用產品包括	軟性混合電 子加值技術 與系統 應用 開發技術計 畫	
軟性混合電子	16	110	可拉伸線路布 局設計技術	利用非接觸式高辨識度應變量測、 三維應變應力轉換及對應之線路布 局,提供可拉伸線路布局達到拉伸 率 10%對應的電阻變化率小於 10% 的線路設計。	軟性混合電子應用領域包括消 費電子、醫療保健、運動健身、 車用電子、航太和工業自動化 等;應用產品包括感測器、智 慧織物、顯示器、電路板、電 池、RFID等。	軟性混 拉 應 開 器 畫	
記憶體技術	17	106	新興三維記憶體(MRAM)元件技術	垂直磁式自旋傳輸記憶體元件開發, 包含垂直磁化材料特性研究、 微磁學模擬研究、以及元件設計與 驗證。	IDM 或記憶體製造廠商。	高階手持裝 置三維整合 應用技術計 畫	9113
記憶體技術	18	106	新興三維記憶 體電路設計暨 系統驗證	可應用於三維堆疊式記憶體之電路設計及系統驗證技術。	半導體設計公司、IDM 或記憶體製造廠商。	高階手持裝 置三維整合 應用技術計	9114

技術	項	產出	计华夕 级	計化社会	可库田绘图	科專計畫	檢核用
類別	次	年度	技術名稱	技術特色	可應用範圍	名稱	序號
記憶體技術			鐵電隨機存取 記憶體元件 (FRAM)	(1)鐵電記憶體 (FRAM) 的低耗能表現最為優秀,擬整合 NVM-MCU 與電源管理技術實現超低功耗物聯網終端元件。(2)三維製程技術成功 微縮 FRAM 元件平面面積,其操作速度、電荷密度與讀寫壽命皆展現優異水準。(3)利用 FRAM 破壞性讀取特性,其專用周邊讀寫電路設計與模擬,進行產品下線、測試與分析。	嵌入式記憶體	物聯網尖端 半導體技術計畫	11485
任意形態 顯東 進技	20	110	3D 多維度控溫 貼合熱壓與取 放設備系統無 塵室空間(Class 1,000)與廠務 系統建置報告	完成 3D 多維度控溫貼合與熱壓設備系統無塵室空間(Class 1,000)與廠務系統建置規劃與完成內容,達成無塵室空間等級: Class 1,000,廠務系統:三相 220V,功率 100KVA、PCW、CDA、GN2、Vacuum,壓力與廢氣排放。	任意形態設備之空間建置規劃 與完成內容,可提供作為任意 形態之貼合熱壓與取放設備建 置廠務空間參考,其中任意形 態設備所製作完成之成品可應 用於車載顯示器、車載感測 器、白色家電、戶外透明顯示 看板、曲面看板等應用。	虚實融合顯	
任意形態 顯製造技	21	110		完成多維度貼合技術建立、導線成 形與破壞行為之關係式建立、成形 與破壞行為之關係式建立、3D 打件 與破壞行為之關係式建立與基板成 形實測,達到模擬設計與實際驗證 之關聯性>90%,並完成多維度控溫 貼合製程技術驗證,達 CCD 對位精 度≤±0.2 mm,貼合精度≤±500 µm。	3D 多維度適形化電子應用領域包含消費電子、醫療保健、車用電子、白色家電、穿戴式裝置等。	虚實融合顯	
功率元件	22	110	功率模組試量	功率模組生產線管理程序及實施準	生產管理、功率半導體、電力		
智慧製 造與智能辨識	23	110	產物料管理 極少瑕疵樣本 之深度學習瑕 疵篩選技術	則參考。 可快速解決 AI 產業的最大痛點,所提出異常檢測 (anomaly detection; AD)之少量資料智能視覺檢測方案,當瑕疵影像或資料為數不多、甚至完全沒有時,仍可快速訓練,部屬瑕疵檢測系統。優點如下:AD網路可在無使用任何 NG 影像時獲得>90%之準確率。	電子、功率模組。 影像瑕疵辨識。	建構總計畫 可程式 3D 異質集成技 術計畫	